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1 Introduction

In an fMRI experiment, one or more different types of stimuli are presented to the subject
and the hemodynamic response (HDR), is measured for a given time after presentation. In
a block experimental design, the time between the offset of one stimulus and the onset of
the next is longer than it takes for the hemodynamic response to regain equilibrium. In
an event-related design, one stimulus can appear before the hemodynamic response from
the previous stimulus has decayed away. This allows for more interesting psychological
experiments but creates overlap in the responses. This overlap can confound the results.
This document describes the signal processing and statistical analysis of the fMRI signal for
event-related designs. This processing stream accounts for the overlap in the hemodynamic
response as well as compensates for the temporal correlation in the fMRI noise.

2 Model of the Hemodynamic Response

The hemodynamic response at a single voxel to the same stimulus (or same type of
stimulus) presented several times over an experiment is assumed to be governed by following
linear time-invariant system:

y(t) = x(t) ∗ h(t) + n(t) (1)

where y(t) is the fMRI signal (ie, the observable), x(t) is a pulse train which has a value of
1 at the onset time of each presentation and zero everywhere else1, h(t) is the (unknown)
hemodynamic response to a single presentation of the stimulus, n(t) is additive noise dis-
tributed N(0, Σn), and ∗ is the convolution operator. Furthermore, we assume the noise
covariance matrix Σn can been factored into two components:

Σn = σ2
nCn, (2)

where σ2
n is the (scalar) variance of the noise at the voxel and Cn is a symmetric, positive-

definite matrix with ones on the diagonal (the “normalized” covariance matrix). It is
further assumed that, while each voxel will have its own σn, Cn will be the same across all
voxels (or at least all voxels within the skull). If the noise is white, then Σn = σ2

nI, where I
is the identity matrix. When the stimulus is brief, h(t) becomes the hemodynamic impulse
response.

1The list of the type of stimulus presented at a certain time is the content of the “parfile”.
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If the stimulus sequence has different types of stimuli (or conditions) that generate a
different HDR, it is assumed that the HDRs combine linearly according to the extension
of equation ??:

y(t) = x1(t) ∗ h1(t) + x2(t) ∗ h2(t) + . . . + xNc
(t) ∗ hNc

(t) + n(t) (3)

where Nc is the number of different types of stimuli, xi(t) is the presentation sequence for
stimulus type i, and hi(t) is the hemodynamic response to a stimulus type i.

The continuous-time equation above can be converted into the following discrete-time,
matrix model of the fMRI signal:

y(k) = X1h1(k) + X2h2(k) + . . . + XNc
hNc

(k) + n(k), (4)

where k ranges from 0 to Ntp (the number of time-points or observations), Xi is the stimulus
convolution matrix (SCM) for stimulus type i, and hi(k) is the continuous-time HDR
sampled at a delay TR ∗ k after the onset of a stimulus of type i, where TR is the time-
between observations. The HDR is sampled over a time window of THDR resulting in
Nh = THDR/TR samples. This is a moving-average (MA) or finite-impulse response (FIR)
model.

Xi, the SCM, is an asymmetric toeplitz matrix of ones and zeros. It has dimension
Ntp × Nh (the number of time-points by the number of delays) and is constructed from
the stimulus sequence xi(t). Let si(k) be the stimulus sequence sampled at the TR. si(k)
is then a vector of ones and zeros. The columns of Xi are shifted version so of si(k).
Thus, the first column of xi is identical to si(k), where k becomes the row number. The
second column has zero on the first row; the remainder of the rows are assigned the values
si(k), 1 ≤ k ≤ Nt − 1. The third column has zeros on the first two rows, etc.

Equation ?? can be further consolidated in matrix notation:

y = Xh + n, (5)

where X = [X1X2 . . .XNc
], ie a horizontal concatenation of the SCMs of the individual

conditions, and h is the vertical concatenation of the individual HDRs. X has dimension
Ntp × Nch where Nch = NcNh is the total number of hemodynamic coefficients (ie, across
all conditions and delays).

3 HDR Estimation

In Equation ??, we know X and y and seek to estimate h. The hemodynamic response is
obtained by solving

min ‖ B−1
n (Xh − y) ‖2 (6)

where Bn = C
1

2

n is the Cholesky factorization of Cn. This is the generalized least squares
problem, which has the solution

h∗ = (XT C−1
n X)−1XT C−1

n y. (7)
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The estimation error is the difference between the estimated HDR and the actual HDR:

eh∗ = h − h∗ = (XT C−1
n X)−1XT C−1

n n (8)

This should not be confused with the residual error which is

ey∗ = y − y∗ = y − Xh∗ (9)

The generalized least squares solution minimizes the estimation error whereas the classical
least squares solution minimizes the residual error. In the special case where the noise is
white (ie, Cn = I), the same h∗ minimizes both.

h∗ is a random variable and will have a covariance matrix:

Σh∗ = E(eh∗eT
h∗) = σ2

n(XTC−1
n X)−1 (10)

Note that the RMS estimation error is equal to trace(Σh∗) which is independent of the
actual value of h.

4 Noise Covariance Matrix Estimation

Estimation of the noise covariance matrix Σn requires two levels of processing. First we
assume that the noise is white, Σn = σ2

nI, in which case our estimate from equation ??

becomes:
h̄ = (XT X)−1XT y, (11)

and the residuals are

eȳ = y − ȳ = y − Xh̄ = (I − X(XT X)−1X)n. (12)

For well counter-balanced sequences and Ntp >> Nch, the elements of the matrix
X(XTX)−1X are small, and so, to a first approximation, the the residuals are a good
estimate of the noise and so we will use the residuals to estimate Cn. Since Cn is the nor-
malized covariance matrix for all voxels within the skull, we will compute it in the following
way. First, the within skull voxels are identified as all the voxels greater than mean voxel
value computed over space and time for a given slice over a given run. For each within-skull
voxel, the normalized, unbiased autocorrelation of the residuals is computed. Normalizing
forces the zero-delay coefficient to be unity. The global correlation function is computed by
averaging each delay coefficient across all within-skull voxels. This global autocorrelation
function is then used to fit the parameters in the following model:

R̄e(k) =











1 k = 0

(1 − α)ρk 0 < |k| ≤ kmax

0 |k| > kmax

(13)
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where kmax is used to limit the delay range over which the data are fit. For TR of 2 seconds,
kmax is typically set to 10. Once α and ρ have been computed, a “synthetic” autocorrelation
function is computed from equation ??. C̄n is then generated as a Toeplitz matrix using
the synthetic function as a seed vector.

This is somewhat of a convoluted process, however, it is motivated by several factors:

• Noise from biological material has different spectral properties than that from air.

• We assume that Cn is not a random variable and so it should not depend upon how
it is measured. We approximate this by fitting only two parameters to an average
computed over a large number of voxels so that measurement artifacts will have little
effect at any particular voxel.

We substitute this estimate of the noise covariance matrix into the formulas for the
average and covariance of the HDR:

ĥ = (XT C̄−1
n X)−1XT C̄−1

n y. (14)

The estimation error is

eĥ = h − ĥ = (XT C̄−1
n X)−1XT C̄−1

n n (15)

Σĥ = σ̂2
n(XT C̄−1

n X)−1, (16)

where σ̂2
n is the variance of eĥ. Note that Σĥ can be factored into a voxel-dependent scalar

and a voxel-independent matrix. This is important for practical reasons has a matrix does
not need to be stored for every voxel.

5 Detrending

It is common for the fMRI signal offset to drift linearly and/or quadratically with time for
non-physiological reasons. As this drift can skew the results, we need a way to remove both
the offset and the offset drift. We refer to the remove of the offset and drift as detrending.
To implement the detrending process, we first modify the model of the hemodynamics
(equation ??) to include offset and drift:

y(t) = x(t) ∗ h(t) + n(t) + a0 + a1t + a2t
2 + . . . + aNdt−1t

Ndt−1 + n(t), (17)

where the value ai is the scalar coefficient of the ith trend. In the above equation, trends
up to order Ndt are represented, where the first trend is a simple offset.

In matrix notation, equation ?? can be represented by:

ypre = Xdthdt + n, (18)
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where ypre is used to indicate the fMRI signal prior to detrending,

Xdt =
[

X t0s t1 . . . tNdt

s

]

= [XD] (19)

and
hdt =

[

h a0 a1 . . . aNdt

]

=
[

h a
]

(20)

and ts is a column vector of sample times ,ie, ts =
[

0 TR 2TR . . . (Ntp − 1)TR
]

. The
hemodynamic responses are fit simultaneously with the trends (assuming white noise).

h̃dt = (XT
dtXdt)

−1XT
dtypre (21)

The trend can now be removed by:

y = ypre − Dh̃dt (22)

y is now the de-trended fMRI signal, and processing can proceed as indicated above with
the one caveat that the degrees of freedom must be reduced by Ndt.

6 Processing Stream Summary

For multiple runs within a single session, the analysis proceeds according to the following
steps. Each slice is processed separately and independently.

1. Compute stimulus convolution matrix for each run, Xr.

2. Detrend each run (equation ??).

3. Estimate the hemodynamic response assuming white noise over the entire session
according to the formula:

h̄S =

(

Nr
∑

r=1

XT
r Xr

)

−1( Nr
∑

r=1

XT
r yr

)

(23)

4. Compute the residual errors for each run

eȳ,r = yr − Xrh̄S (24)

5. Compute the estimated noise covariance matricies, ¯Cn,r, for each run.

6. Recompute the session hemodynamic response estimate

ĥs =

(

Nr
∑

r=1

XT
r C̄−1

n,rXr

)

−1( Nr
∑

r=1

XT
r C̄−1

n,ryr

)

, (25)
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7. Recompute the residual error at each voxel:

eĥr
= yr − Xrĥs (26)

8. Compute the variance of the residual over the entire session for each voxel:

σ̂2
n,s =

∑Nr

r=1 eT

ĥr

C̄−1
n,reĥr

Ndof

, (27)

where the degrees of freedom, Ndof = Nr ∗ Ntp − Nch.

9. Compute the session hemodynamic covariance matrix:

Σĥs
= σ̂2

n,s

(

Nr
∑

r=1

XT
r C̄−1

n,rXr

)

−1

= σ2
ĥs

Cĥs
(28)

where Σĥs
can be factored into a voxel-dependent scalar and a voxel-independent

matrix.

7 Statistical Inference

The goal of the fMRI experiment is to determine whether a location in the brain is becoming
active in response to a particular stimulus type or whether one type activates a particular
region more than another. Tests can also be restricted by range of post-stimulus delay. For
example, the null hypothesis could be that none of the conditions at any delay generate a
hemodynamic response that is significantly different than zero:

H0 : ‖ĥ‖ = 0 (29)

This can be tested using an F-test:

F (Nch, Ndof ) =
ĥT C−1

ĥ
ĥ

Nchσ2
ĥ

(30)

In general, one may want to restrict the test to a subset of delays and conditions or
combinations of conditions. For example, H0 : ‖ĥ1 − ĥ2‖ = 0 or H0 : ‖ĥ3(3 : 6)‖ = 0.
Mathematically, this is equivalent to multiplying ĥ by a matrix R and testing the norm of
the result.

q = Rĥ, H0 : ‖q‖ = 0 (31)

with the corresponding F test

Fq(Nq, Ndof ) =
qT (RCĥR

T )−1q

Nqσ
2
ĥ

, (32)
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where Nq is the number of rows in R. The restriction matrix, R, is typically a matrix of
±1’s and 0’s. The number of columns of R must be equal to Nch. In the example given
in equations ?? and ??, R would simply be an identity matrix of dimension Nch. When R
is a vector, then the F test of equation ?? reduces to a t test. Note that equation ?? can
again be factored into a voxel-dependent scalar and a voxel-independent matrix.

8 Table of Variable Names
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y fMRI signal for a single voxel
ypre fMRI signal for a single voxel before detrending
X Stimulus convolution matrix (SCM)
D Trend Matrix
Xdt Stimulus convolution matrix with trend matrix included
h “True” HDR.
hdt “True” HDR with trend coefficients
n Zero-mean gaussian noise
Σn Noise covariance matrix
Cn Normalized noise covariance matrix (voxel-independent)
σn Noise variance (voxel-dependent)
h∗ best fit HDR when Cn is known
h̄ best fit HDR when the noise is white

ĥ best fit HDR when Cn is estimated from residuals.

h̃dt best fit HDR with trend coefficients
eh∗, eh̄, eĥ estimation errors.

Σĥ Covariance matrix of ĥ

Cĥ Normalized covariance matrix of ĥ (voxel-independent)

σĥ Variance of ĥ (voxel-dependent)
Re Autocorrelation of residual errors
α,ρ parameters used to fit Re.
kmax maximum number of coefficients of Re to fit.
R Restriction Matrix
q Statistical test vector (equals Rh)
Ntp Number of time points (ie, scans) per run.
Nh Number of parameters (per stimulus) estimated in HDR.
Nc Number of stimulus conditions.
Nch Total number of parameters estimated (Nc ∗ Nh)
Ndt Detrending order.
Nr Number of runs.
Nq Number of rows in the restriction matrix.
TR Time between observations.
THDR Time window over which to estimate the HDR (Nh ∗ TR).
NS Number of sessions (or subjects)
NR Number of runs per session
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