/* Copyright 2005-2016 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef __TBB__flow_graph_impl_H #define __TBB__flow_graph_impl_H #ifndef __TBB_flow_graph_H #error Do not #include this internal file directly; use public TBB headers instead. #endif // included in namespace tbb::flow::interfaceX (in flow_graph.h) namespace internal { typedef tbb::internal::uint64_t tag_value; using tbb::internal::strip; namespace graph_policy_namespace { struct rejecting { }; struct reserving { }; struct queueing { }; // K == type of field used for key-matching. Each tag-matching port will be provided // functor that, given an object accepted by the port, will return the /// field of type K being used for matching. template::type > > struct key_matching { typedef K key_type; typedef typename strip::type base_key_type; typedef KHash hash_compare_type; }; // old tag_matching join's new specifier typedef key_matching tag_matching; } // -------------- function_body containers ---------------------- //! A functor that takes no input and generates a value of type Output template< typename Output > class source_body : tbb::internal::no_assign { public: virtual ~source_body() {} virtual bool operator()(Output &output) = 0; virtual source_body* clone() = 0; }; //! The leaf for source_body template< typename Output, typename Body> class source_body_leaf : public source_body { public: source_body_leaf( const Body &_body ) : body(_body) { } /*override*/ bool operator()(Output &output) { return body( output ); } /*override*/ source_body_leaf* clone() { return new source_body_leaf< Output, Body >(body); } Body get_body() { return body; } private: Body body; }; //! A functor that takes an Input and generates an Output template< typename Input, typename Output > class function_body : tbb::internal::no_assign { public: virtual ~function_body() {} virtual Output operator()(const Input &input) = 0; virtual function_body* clone() = 0; }; //! the leaf for function_body template class function_body_leaf : public function_body< Input, Output > { public: function_body_leaf( const B &_body ) : body(_body) { } Output operator()(const Input &i) { return body(i); } B get_body() { return body; } /*override*/ function_body_leaf* clone() { return new function_body_leaf< Input, Output, B >(body); } private: B body; }; //! the leaf for function_body specialized for Input and output of continue_msg template class function_body_leaf< continue_msg, continue_msg, B> : public function_body< continue_msg, continue_msg > { public: function_body_leaf( const B &_body ) : body(_body) { } continue_msg operator()( const continue_msg &i ) { body(i); return i; } B get_body() { return body; } /*override*/ function_body_leaf* clone() { return new function_body_leaf< continue_msg, continue_msg, B >(body); } private: B body; }; //! the leaf for function_body specialized for Output of continue_msg template class function_body_leaf< Input, continue_msg, B> : public function_body< Input, continue_msg > { public: function_body_leaf( const B &_body ) : body(_body) { } continue_msg operator()(const Input &i) { body(i); return continue_msg(); } B get_body() { return body; } /*override*/ function_body_leaf* clone() { return new function_body_leaf< Input, continue_msg, B >(body); } private: B body; }; //! the leaf for function_body specialized for Input of continue_msg template class function_body_leaf< continue_msg, Output, B > : public function_body< continue_msg, Output > { public: function_body_leaf( const B &_body ) : body(_body) { } Output operator()(const continue_msg &i) { return body(i); } B get_body() { return body; } /*override*/ function_body_leaf* clone() { return new function_body_leaf< continue_msg, Output, B >(body); } private: B body; }; #if __TBB_PREVIEW_ASYNC_NODE template< typename T, typename = typename T::async_gateway_type > void set_async_gateway(T *body, void *g) { body->set_async_gateway(static_cast(g)); } inline void set_async_gateway(...) { } #endif //! function_body that takes an Input and a set of output ports template class multifunction_body : tbb::internal::no_assign { public: virtual ~multifunction_body () {} virtual void operator()(const Input &/* input*/, OutputSet &/*oset*/) = 0; virtual multifunction_body* clone() = 0; #if __TBB_PREVIEW_ASYNC_NODE virtual void set_gateway(void *gateway) = 0; #endif }; //! leaf for multifunction. OutputSet can be a std::tuple or a vector. template class multifunction_body_leaf : public multifunction_body { public: multifunction_body_leaf(const B &_body) : body(_body) { } void operator()(const Input &input, OutputSet &oset) { body(input, oset); // body may explicitly put() to one or more of oset. } B get_body() { return body; } #if __TBB_PREVIEW_ASYNC_NODE /*override*/ void set_gateway(void *gateway) { set_async_gateway(&body, gateway); } #endif /*override*/ multifunction_body_leaf* clone() { return new multifunction_body_leaf(body); } private: B body; }; // ------ function bodies for hash_buffers and key-matching joins. template class type_to_key_function_body : tbb::internal::no_assign { public: virtual ~type_to_key_function_body() {} virtual Output operator()(const Input &input) = 0; // returns an Output virtual type_to_key_function_body* clone() = 0; }; // specialization for ref output template class type_to_key_function_body : tbb::internal::no_assign { public: virtual ~type_to_key_function_body() {} virtual const Output & operator()(const Input &input) = 0; // returns a const Output& virtual type_to_key_function_body* clone() = 0; }; template class type_to_key_function_body_leaf : public type_to_key_function_body { public: type_to_key_function_body_leaf( const B &_body ) : body(_body) { } /*override*/Output operator()(const Input &i) { return body(i); } B get_body() { return body; } /*override*/ type_to_key_function_body_leaf* clone() { return new type_to_key_function_body_leaf< Input, Output, B>(body); } private: B body; }; template class type_to_key_function_body_leaf : public type_to_key_function_body< Input, Output&> { public: type_to_key_function_body_leaf( const B &_body ) : body(_body) { } /*override*/const Output& operator()(const Input &i) { return body(i); } B get_body() { return body; } /*override*/ type_to_key_function_body_leaf* clone() { return new type_to_key_function_body_leaf< Input, Output&, B>(body); } private: B body; }; // --------------------------- end of function_body containers ------------------------ // --------------------------- node task bodies --------------------------------------- //! A task that calls a node's forward_task function template< typename NodeType > class forward_task_bypass : public task { NodeType &my_node; public: forward_task_bypass( NodeType &n ) : my_node(n) {} task *execute() { task * new_task = my_node.forward_task(); if (new_task == SUCCESSFULLY_ENQUEUED) new_task = NULL; return new_task; } }; //! A task that calls a node's apply_body_bypass function, passing in an input of type Input // return the task* unless it is SUCCESSFULLY_ENQUEUED, in which case return NULL template< typename NodeType, typename Input > class apply_body_task_bypass : public task { NodeType &my_node; Input my_input; public: apply_body_task_bypass( NodeType &n, const Input &i ) : my_node(n), my_input(i) {} task *execute() { task * next_task = my_node.apply_body_bypass( my_input ); if(next_task == SUCCESSFULLY_ENQUEUED) next_task = NULL; return next_task; } }; //! A task that calls a node's apply_body_bypass function with no input template< typename NodeType > class source_task_bypass : public task { NodeType &my_node; public: source_task_bypass( NodeType &n ) : my_node(n) {} task *execute() { task *new_task = my_node.apply_body_bypass( ); if(new_task == SUCCESSFULLY_ENQUEUED) return NULL; return new_task; } }; // ------------------------ end of node task bodies ----------------------------------- //! An empty functor that takes an Input and returns a default constructed Output template< typename Input, typename Output > struct empty_body { Output operator()( const Input & ) const { return Output(); } }; //! A node_cache maintains a std::queue of elements of type T. Each operation is protected by a lock. template< typename T, typename M=spin_mutex > class node_cache { public: typedef size_t size_type; bool empty() { typename mutex_type::scoped_lock lock( my_mutex ); return internal_empty(); } void add( T &n ) { typename mutex_type::scoped_lock lock( my_mutex ); internal_push(n); } void remove( T &n ) { typename mutex_type::scoped_lock lock( my_mutex ); for ( size_t i = internal_size(); i != 0; --i ) { T &s = internal_pop(); if ( &s == &n ) return; // only remove one predecessor per request internal_push(s); } } void clear() { while( !my_q.empty()) (void)my_q.pop(); #if TBB_PREVIEW_FLOW_GRAPH_FEATURES my_built_predecessors.clear(); #endif } #if TBB_PREVIEW_FLOW_GRAPH_FEATURES typedef edge_container built_predecessors_type; built_predecessors_type &built_predecessors() { return my_built_predecessors; } typedef typename edge_container::edge_list_type predecessor_list_type; void internal_add_built_predecessor( T &n ) { typename mutex_type::scoped_lock lock( my_mutex ); my_built_predecessors.add_edge(n); } void internal_delete_built_predecessor( T &n ) { typename mutex_type::scoped_lock lock( my_mutex ); my_built_predecessors.delete_edge(n); } void copy_predecessors( predecessor_list_type &v) { typename mutex_type::scoped_lock lock( my_mutex ); my_built_predecessors.copy_edges(v); } size_t predecessor_count() { typename mutex_type::scoped_lock lock(my_mutex); return (size_t)(my_built_predecessors.edge_count()); } #endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */ protected: typedef M mutex_type; mutex_type my_mutex; std::queue< T * > my_q; #if TBB_PREVIEW_FLOW_GRAPH_FEATURES built_predecessors_type my_built_predecessors; #endif // Assumes lock is held inline bool internal_empty( ) { return my_q.empty(); } // Assumes lock is held inline size_type internal_size( ) { return my_q.size(); } // Assumes lock is held inline void internal_push( T &n ) { my_q.push(&n); } // Assumes lock is held inline T &internal_pop() { T *v = my_q.front(); my_q.pop(); return *v; } }; //! A cache of predecessors that only supports try_get template< typename T, typename M=spin_mutex > class predecessor_cache : public node_cache< sender, M > { public: typedef M mutex_type; typedef T output_type; typedef sender predecessor_type; typedef receiver successor_type; predecessor_cache( ) : my_owner( NULL ) { } void set_owner( successor_type *owner ) { my_owner = owner; } bool get_item( output_type &v ) { bool msg = false; do { predecessor_type *src; { typename mutex_type::scoped_lock lock(this->my_mutex); if ( this->internal_empty() ) { break; } src = &this->internal_pop(); } // Try to get from this sender msg = src->try_get( v ); if (msg == false) { // Relinquish ownership of the edge if (my_owner) src->register_successor( *my_owner ); } else { // Retain ownership of the edge this->add(*src); } } while ( msg == false ); return msg; } // If we are removing arcs (rf_clear_edges), call clear() rather than reset(). void reset() { if (my_owner) { for(;;) { predecessor_type *src; { if (this->internal_empty()) break; src = &this->internal_pop(); } src->register_successor( *my_owner ); } } } protected: #if TBB_PREVIEW_FLOW_GRAPH_FEATURES using node_cache< sender, M >::my_built_predecessors; #endif successor_type *my_owner; }; //! An cache of predecessors that supports requests and reservations template< typename T, typename M=spin_mutex > class reservable_predecessor_cache : public predecessor_cache< T, M > { public: typedef M mutex_type; typedef T output_type; typedef sender predecessor_type; typedef receiver successor_type; reservable_predecessor_cache( ) : reserved_src(NULL) { } bool try_reserve( output_type &v ) { bool msg = false; do { { typename mutex_type::scoped_lock lock(this->my_mutex); if ( reserved_src || this->internal_empty() ) return false; reserved_src = &this->internal_pop(); } // Try to get from this sender msg = reserved_src->try_reserve( v ); if (msg == false) { typename mutex_type::scoped_lock lock(this->my_mutex); // Relinquish ownership of the edge reserved_src->register_successor( *this->my_owner ); reserved_src = NULL; } else { // Retain ownership of the edge this->add( *reserved_src ); } } while ( msg == false ); return msg; } bool try_release( ) { reserved_src->try_release( ); reserved_src = NULL; return true; } bool try_consume( ) { reserved_src->try_consume( ); reserved_src = NULL; return true; } void reset( ) { reserved_src = NULL; predecessor_cache::reset( ); } void clear() { reserved_src = NULL; predecessor_cache::clear(); } private: predecessor_type *reserved_src; }; //! An abstract cache of successors template class successor_cache : tbb::internal::no_copy { protected: typedef M mutex_type; mutex_type my_mutex; typedef receiver successor_type; typedef receiver *pointer_type; typedef std::list< pointer_type > successors_type; #if TBB_PREVIEW_FLOW_GRAPH_FEATURES edge_container my_built_successors; #endif successors_type my_successors; sender *my_owner; public: #if TBB_PREVIEW_FLOW_GRAPH_FEATURES typedef typename edge_container::edge_list_type successor_list_type; edge_container &built_successors() { return my_built_successors; } void internal_add_built_successor( successor_type &r) { typename mutex_type::scoped_lock l(my_mutex, true); my_built_successors.add_edge( r ); } void internal_delete_built_successor( successor_type &r) { typename mutex_type::scoped_lock l(my_mutex, true); my_built_successors.delete_edge(r); } void copy_successors( successor_list_type &v) { typename mutex_type::scoped_lock l(my_mutex, false); my_built_successors.copy_edges(v); } size_t successor_count() { typename mutex_type::scoped_lock l(my_mutex,false); return my_built_successors.edge_count(); } #endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */ successor_cache( ) : my_owner(NULL) {} void set_owner( sender *owner ) { my_owner = owner; } virtual ~successor_cache() {} void register_successor( successor_type &r ) { typename mutex_type::scoped_lock l(my_mutex, true); my_successors.push_back( &r ); } void remove_successor( successor_type &r ) { typename mutex_type::scoped_lock l(my_mutex, true); for ( typename successors_type::iterator i = my_successors.begin(); i != my_successors.end(); ++i ) { if ( *i == & r ) { my_successors.erase(i); break; } } } bool empty() { typename mutex_type::scoped_lock l(my_mutex, false); return my_successors.empty(); } void clear() { my_successors.clear(); #if TBB_PREVIEW_FLOW_GRAPH_FEATURES my_built_successors.clear(); #endif } virtual task * try_put_task( const T &t ) = 0; }; // successor_cache //! An abstract cache of successors, specialized to continue_msg template<> class successor_cache< continue_msg > : tbb::internal::no_copy { protected: typedef spin_rw_mutex mutex_type; mutex_type my_mutex; typedef receiver successor_type; typedef receiver *pointer_type; typedef std::list< pointer_type > successors_type; successors_type my_successors; #if TBB_PREVIEW_FLOW_GRAPH_FEATURES edge_container my_built_successors; typedef edge_container::edge_list_type successor_list_type; #endif sender *my_owner; public: #if TBB_PREVIEW_FLOW_GRAPH_FEATURES edge_container &built_successors() { return my_built_successors; } void internal_add_built_successor( successor_type &r) { mutex_type::scoped_lock l(my_mutex, true); my_built_successors.add_edge( r ); } void internal_delete_built_successor( successor_type &r) { mutex_type::scoped_lock l(my_mutex, true); my_built_successors.delete_edge(r); } void copy_successors( successor_list_type &v) { mutex_type::scoped_lock l(my_mutex, false); my_built_successors.copy_edges(v); } size_t successor_count() { mutex_type::scoped_lock l(my_mutex,false); return my_built_successors.edge_count(); } #endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */ successor_cache( ) : my_owner(NULL) {} void set_owner( sender *owner ) { my_owner = owner; } virtual ~successor_cache() {} void register_successor( successor_type &r ) { mutex_type::scoped_lock l(my_mutex, true); my_successors.push_back( &r ); if ( my_owner && r.is_continue_receiver() ) { r.register_predecessor( *my_owner ); } } void remove_successor( successor_type &r ) { mutex_type::scoped_lock l(my_mutex, true); for ( successors_type::iterator i = my_successors.begin(); i != my_successors.end(); ++i ) { if ( *i == & r ) { // TODO: Check if we need to test for continue_receiver before // removing from r. if ( my_owner ) r.remove_predecessor( *my_owner ); my_successors.erase(i); break; } } } bool empty() { mutex_type::scoped_lock l(my_mutex, false); return my_successors.empty(); } void clear() { my_successors.clear(); #if TBB_PREVIEW_FLOW_GRAPH_FEATURES my_built_successors.clear(); #endif } virtual task * try_put_task( const continue_msg &t ) = 0; }; // successor_cache< continue_msg > //! A cache of successors that are broadcast to template class broadcast_cache : public successor_cache { typedef M mutex_type; typedef typename successor_cache::successors_type successors_type; public: broadcast_cache( ) {} // as above, but call try_put_task instead, and return the last task we received (if any) /*override*/ task * try_put_task( const T &t ) { task * last_task = NULL; bool upgraded = true; typename mutex_type::scoped_lock l(this->my_mutex, upgraded); typename successors_type::iterator i = this->my_successors.begin(); while ( i != this->my_successors.end() ) { task *new_task = (*i)->try_put_task(t); last_task = combine_tasks(last_task, new_task); // enqueue if necessary if(new_task) { ++i; } else { // failed if ( (*i)->register_predecessor(*this->my_owner) ) { if (!upgraded) { l.upgrade_to_writer(); upgraded = true; } i = this->my_successors.erase(i); } else { ++i; } } } return last_task; } }; //! A cache of successors that are put in a round-robin fashion template class round_robin_cache : public successor_cache { typedef size_t size_type; typedef M mutex_type; typedef typename successor_cache::successors_type successors_type; public: round_robin_cache( ) {} size_type size() { typename mutex_type::scoped_lock l(this->my_mutex, false); return this->my_successors.size(); } /*override*/task *try_put_task( const T &t ) { bool upgraded = true; typename mutex_type::scoped_lock l(this->my_mutex, upgraded); typename successors_type::iterator i = this->my_successors.begin(); while ( i != this->my_successors.end() ) { task *new_task = (*i)->try_put_task(t); if ( new_task ) { return new_task; } else { if ( (*i)->register_predecessor(*this->my_owner) ) { if (!upgraded) { l.upgrade_to_writer(); upgraded = true; } i = this->my_successors.erase(i); } else { ++i; } } } return NULL; } }; template class decrementer : public continue_receiver, tbb::internal::no_copy { T *my_node; task *execute() { return my_node->decrement_counter(); } public: typedef continue_msg input_type; typedef continue_msg output_type; decrementer( int number_of_predecessors = 0 ) : continue_receiver( number_of_predecessors ) { } void set_owner( T *node ) { my_node = node; } }; } #endif // __TBB__flow_graph_impl_H