\name{ClfFs} \alias{ClfFs} \title{Classifier with Feature Selection} \description{Apply a sequence of feature selection provide in the constructor parameters before applying the classifier it-self. } \usage{ } \arguments{ \item{}{} \item{}{} \value{ } \seealso{ } \examples{ lml() mlData=MlData(file='small.csv',grpCol='class',subjCol='subject') ## 1. Filters fsSvm=ClfFs(fs1=FsFilterTest(test="t.test",N=2), clf=ClfSvm()) oSvm=fsSvm$learn(mlData)$predict(mlData) fsLda=ClfFs(fs1=FsFilterTest(test="t.test",N=2), clf=ClfLda()) oLda=fsLda$learn(mlData)$predict(mlData) ## 2. Filters is used to rank features and plot results ## along the number of features with cross validation ## => See CvResults ## 3. Wrappers lml() mlData=MlData(file='small.csv',grpCol='class',subjCol='subject') wrapLda=ClfFs(fs1=FsWrapperSFS(objFunc=ManovaFstat()), clf=ClfLda()) wrapLda$learn(mlData) wrapLda$predict(mlData) ## 4. Filter + wrapper lml() mlData=MlData(file='medium_scramble.csv',grpCol='class',subjCol='subject') filtWrapLda=ClfFs( fs1=FsFilterTest(test="t.test",FDR=.2), fs2=FsWrapperSFS(objFunc=ManovaFstat()), clf=ClfLda()) wrapLda$learn(mlData)$predict(mlData) }