\name{CvLog} \title{Cross validation Leave Out Group} \description{ Define a MlData partition in train/test sets. There is 2 way to construct a CvLog. If \code{trainProp} is provided then it build a balanced train/test sets. Else force the partition rows with testRows. } \usage{ ##Constructor CvLog(mlData=NULL, trainProp=80, trainRows=NULL, foldName=NULL cvType='LOG',foldName='GLOBAL' mlDataTrain=NULL,mlDataTest=NULL) ##Mis methods setData(mlData)/resetData() #Memory saving tricks should be replaced by clever MlData ## Misc accessors vector getTrainRows() vector getTestRows() run(clf) #clf : a set of classifiers. #run classifier(s): #learn on train set, predict on train and test set. #The output is a CvResults. } \arguments{ \item{mlData}{\code{MlData} object} \item{trainProp}{the percentage of training subjects, is used to randomly build balanced train/test set if \code{trainRows} is omitted.} \item{testRows}{Manually set the the test rows} \item{mlDataTrain}{Manually set a \code{MlData} object for train data} \item{mlDataTest} {Manually set a \code{MlData} object for test data} \item{foldName} {Optionnal if one want to give a name this output (Used by \code{CvLoo} and \code{CvNFolds} in order to identify distinct runs)} \item{clf}{\code{Clf} "classifier" Object} } \value{ \item{CvResults}{Cross validation output} } \seealso{ \link{\code{MlData}} \link{\code{CvResults}} } \examples{ mlData=MlData(file='small.csv',grpCol='class',subjCol='subject') cv=CvLog(mlData) resLda=cv$run(clf=ClfLda()) resSvm=cv$run(clf=ClfSvm()) resLda$testAccuracy() resSvm$testAccuracy() ##Everything on a single line: res=CvLog(mlData)$run(clf=ClfLda()) res$getData() }