/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkLine.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkLine - cell represents a 1D line // .SECTION Description // vtkLine is a concrete implementation of vtkCell to represent a 1D line. #ifndef __vtkLine_h #define __vtkLine_h #include "vtkCell.h" class vtkIncrementalPointLocator; class VTK_FILTERING_EXPORT vtkLine : public vtkCell { public: static vtkLine *New(); vtkTypeRevisionMacro(vtkLine,vtkCell); void PrintSelf(ostream& os, vtkIndent indent); // Description: // See the vtkCell API for descriptions of these methods. int GetCellType() {return VTK_LINE;}; int GetCellDimension() {return 1;}; int GetNumberOfEdges() {return 0;}; int GetNumberOfFaces() {return 0;}; vtkCell *GetEdge(int) {return 0;}; vtkCell *GetFace(int) {return 0;}; int CellBoundary(int subId, double pcoords[3], vtkIdList *pts); void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd); int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights); void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights); int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts); void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs); virtual double *GetParametricCoords(); // Description: // Clip this line using scalar value provided. Like contouring, except // that it cuts the line to produce other lines. void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *lines, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut); // Description: // Return the center of the triangle in parametric coordinates. int GetParametricCenter(double pcoords[3]); // Description: // Line-line intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId); // Description: // Performs intersection of two finite 3D lines. An intersection is found if // the projection of the two lines onto the plane perpendicular to the cross // product of the two lines intersect. The parameters (u,v) are the // parametric coordinates of the lines at the position of closest approach. static int Intersection(double p1[3], double p2[3], double x1[3], double x2[3], double& u, double& v); // Description: // Compute the distance of a point x to a finite line (p1,p2). The method // computes the parametric coordinate t and the point location on the // line. Note that t is unconstrained (i.e., it may lie outside the range // [0,1]) but the closest point will lie within the finite line // [p1,p2]. Also, the method returns the distance squared between x and the // line (p1,p2). static double DistanceToLine(double x[3], double p1[3], double p2[3], double &t, double closestPoint[3]); // Description: // Determine the distance of the current vertex to the edge defined by // the vertices provided. Returns distance squared. Note: line is assumed // infinite in extent. static double DistanceToLine(double x[3], double p1[3], double p2[3]); // Description: // Computes the shortest distance squared between two infinite lines, each // defined by a pair of points (l0,l1) and (m0,m1). // Upon return, the closest points on the two line segments will be stored // in closestPt1 and closestPt2. Their parametric coords // (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is // the shortest distance squared between the two line-segments. static double DistanceBetweenLines( double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double &t1, double &t2 ); // Description: // Computes the shortest distance squared between two finite line segments // defined by their end points (l0,l1) and (m0,m1). // Upon return, the closest points on the two line segments will be stored // in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1) // will be stored in t0 and t1. The return value is the shortest distance // squared between the two line-segments. static double DistanceBetweenLineSegments( double l0[3], double l1[3], double m0[3], double m1[3], double closestPt1[3], double closestPt2[3], double &t1, double &t2 ); // Description: // @deprecated Replaced by vtkLine::InterpolateFunctions as of VTK 5.2 static void InterpolationFunctions(double pcoords[3], double weights[2]); // Description: // @deprecated Replaced by vtkLine::InterpolateDerivs as of VTK 5.2 static void InterpolationDerivs(double pcoords[3], double derivs[2]); // Description: // Compute the interpolation functions/derivatives // (aka shape functions/derivatives) virtual void InterpolateFunctions(double pcoords[3], double weights[2]) { vtkLine::InterpolationFunctions(pcoords,weights); } virtual void InterpolateDerivs(double pcoords[3], double derivs[2]) { vtkLine::InterpolationDerivs(pcoords,derivs); } protected: vtkLine(); ~vtkLine() {}; private: vtkLine(const vtkLine&); // Not implemented. void operator=(const vtkLine&); // Not implemented. }; //---------------------------------------------------------------------------- inline int vtkLine::GetParametricCenter(double pcoords[3]) { pcoords[0] = 0.5; pcoords[1] = pcoords[2] = 0.0; return 0; } #endif