/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkParametricRoman.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkParametricRoman - Generate Steiner's Roman Surface. // .SECTION Description // vtkParametricRoman generates Steiner's Roman Surface. // // For further information about this surface, please consult the // technical description "Parametric surfaces" in http://www.vtk.org/documents.php // in the "VTK Technical Documents" section in the VTk.org web pages. // // .SECTION Thanks // Andrew Maclean a.maclean@cas.edu.au for // creating and contributing the class. // #ifndef __vtkParametricRoman_h #define __vtkParametricRoman_h #include "vtkParametricFunction.h" class VTK_COMMON_EXPORT vtkParametricRoman : public vtkParametricFunction { public: vtkTypeRevisionMacro(vtkParametricRoman,vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent); // Description // Return the parametric dimension of the class. virtual int GetDimension() {return 2;} // Description: // Construct Steiner's Roman Surface with the following parameters: // MinimumU = 0, MaximumU = Pi, // MinimumV = 0, MaximumV = Pi, // JoinU = 1, JoinV = 1, // TwistU = 1, TwistV = 0; // ClockwiseOrdering = 1, // DerivativesAvailable = 1, // Radius = 1 static vtkParametricRoman *New(); // Description: // Set/Get the radius. vtkSetMacro(Radius,double); vtkGetMacro(Radius,double); // Description: // Steiner's Roman Surface // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw, Pt, Duvw. // // uvw are the parameters with Pt being the the Cartesian point, // Duvw are the derivatives of this point with respect to u, v and w. // Pt, Duvw are obtained from Evaluate(). // // This function is only called if the ScalarMode has the value // vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED // // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricRoman(); ~vtkParametricRoman(); // Variables double Radius; private: vtkParametricRoman(const vtkParametricRoman&); // Not implemented. void operator=(const vtkParametricRoman&); // Not implemented. }; #endif