/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkPolygon.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkPolygon - a cell that represents an n-sided polygon // .SECTION Description // vtkPolygon is a concrete implementation of vtkCell to represent a 2D // n-sided polygon. The polygons cannot have any internal holes, and cannot // self-intersect. Define the polygon with n-points ordered in the counter- // clockwise direction; do not repeat the last point. #ifndef __vtkPolygon_h #define __vtkPolygon_h #include "vtkCell.h" class vtkDoubleArray; class vtkIdTypeArray; class vtkLine; class vtkPoints; class vtkQuad; class vtkTriangle; class vtkIncrementalPointLocator; class VTK_FILTERING_EXPORT vtkPolygon : public vtkCell { public: static vtkPolygon *New(); vtkTypeRevisionMacro(vtkPolygon,vtkCell); void PrintSelf(ostream& os, vtkIndent indent); // Description: // See the vtkCell API for descriptions of these methods. int GetCellType() {return VTK_POLYGON;}; int GetCellDimension() {return 2;}; int GetNumberOfEdges() {return this->GetNumberOfPoints();}; int GetNumberOfFaces() {return 0;}; vtkCell *GetEdge(int edgeId); vtkCell *GetFace(int) {return 0;}; int CellBoundary(int subId, double pcoords[3], vtkIdList *pts); void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator,vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd); void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tris, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut); int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights); void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights); int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId); int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts); void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs); int IsPrimaryCell() {return 0;} // Description: // Compute the area of a polygon. This is a convenience function // which simply calls static double ComputeArea(vtkPoints *p, // vtkIdType numPts, vtkIdType *pts, double normal[3]); // with the appropriate parameters from the instantiated vtkPolygon. double ComputeArea(); // Description: // Compute the interpolation functions/derivatives // (aka shape functions/derivatives) virtual void InterpolateFunctions(double pcoords[3], double *sf); virtual void InterpolateDerivs(double pcoords[3], double *derivs); // Description: // Polygon specific methods. static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]); static void ComputeNormal(vtkPoints *p, double n[3]); static void ComputeNormal(vtkIdTypeArray *ids, vtkPoints *pts, double n[3]); // Description: // Compute the polygon normal from an array of points. This version assumes // that the polygon is convex, and looks for the first valid normal. static void ComputeNormal(int numPts, double *pts, double n[3]); // Description: // Compute the centroid of a set of points. static void ComputeCentroid(vtkIdTypeArray *ids, vtkPoints *pts, double centroid[3]); // Description: // Compute interpolation weights using 1/r**2 normalized sum. // @deprecated Replaced by vtkPolygon::InterpolateFunctions as of VTK 5.2 VTK_LEGACY(void ComputeWeights(double x[3], double *weights)); // Description: // Compute the area of a polygon in 3D. The area is returned, as well as // the normal (a side effect of using this method). If you desire to // compute the area of a triangle, use vtkTriangleArea which is faster. // If you already have a vtkPolygon instantiated, a convenience function, // ComputeArea() is provided. static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts, double normal[3]); // Description: // Create a local s-t coordinate system for a polygon. The point p0 is // the origin of the local system, p10 is s-axis vector, and p20 is the // t-axis vector. (These are expressed in the modeling coordinate system and // are vectors of dimension [3].) The values l20 and l20 are the lengths of // the vectors p10 and p20, and n is the polygon normal. int ParameterizePolygon(double p0[3], double p10[3], double &l10, double p20[3], double &l20, double n[3]); // Description: // Determine whether point is inside polygon. Function uses ray-casting // to determine if point is inside polygon. Works for arbitrary polygon shape // (e.g., non-convex). Returns 0 if point is not in polygon; 1 if it is. // Can also return -1 to indicate degenerate polygon. static int PointInPolygon(double x[3], int numPts, double *pts, double bounds[6], double n[3]); // Description: // Triangulate this polygon. The user must provide the vtkIdList outTris. // On output, the outTris list contains the ids of the points defining // the triangulation. The ids are ordered into groups of three: each // three-group defines one triangle. int Triangulate(vtkIdList *outTris); // Description: // Same as Triangulate(vtkIdList *outTris) // but with a first pass to split the polygon into non-degenerate polygons. int NonDegenerateTriangulate(vtkIdList *outTris); // Description: // Compute the distance of a point to a polygon. The closest point on // the polygon is also returned. The bounds should be provided to // accelerate the computation. static double DistanceToPolygon(double x[3], int numPts, double *pts, double bounds[6], double closest[3]); // Description: // Method intersects two polygons. You must supply the number of points and // point coordinates (npts, *pts) and the bounding box (bounds) of the two // polygons. Also supply a tolerance squared for controlling // error. The method returns 1 if there is an intersection, and 0 if // not. A single point of intersection x[3] is also returned if there // is an intersection. static int IntersectPolygonWithPolygon(int npts, double *pts, double bounds[6], int npts2, double *pts2, double bounds2[3], double tol, double x[3]); // Description: // Intersect two convex 2D polygons to produce a line segment as output. // The return status of the methods indicated no intersection (returns 0); // a single point of intersection (returns 1); or a line segment (i.e., two // points of intersection, returns 2). The points of intersection are // returned in the arrays p0 and p1. If less than two points of // intersection are generated then p1 and/or p0 may be // indeterminiate. Finally, if the two convex polygons are parallel, then // "0" is returned (i.e., no intersection) even if the triangles lie on one // another. static int IntersectConvex2DCells(vtkCell *cell1, vtkCell *cell2, double tol, double p0[3], double p1[3]); protected: vtkPolygon(); ~vtkPolygon(); // variables used by instances of this class double Tolerance; // Intersection tolerance int SuccessfulTriangulation; // Stops recursive tri. if necessary double Normal[3]; //polygon normal vtkIdList *Tris; vtkTriangle *Triangle; vtkQuad *Quad; vtkDoubleArray *TriScalars; vtkLine *Line; // Helper methods for triangulation------------------------------ // Description: // A fast triangulation method. Uses recursive divide and // conquer based on plane splitting to reduce loop into triangles. // The cell (e.g., triangle) is presumed properly initialized (i.e., // Points and PointIds). int EarCutTriangulation(); private: vtkPolygon(const vtkPolygon&); // Not implemented. void operator=(const vtkPolygon&); // Not implemented. }; #endif