// Template sparse classes /* Copyright (C) 2004-2015 David Bateman Copyright (C) 1998-2004 Andy Adler Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see . */ #if !defined (octave_Sparse_h) #define octave_Sparse_h 1 #include #include #include #include #include "Array.h" #include "dim-vector.h" #include "lo-error.h" #include "lo-utils.h" #include "oct-sort.h" class idx_vector; class PermMatrix; // Two dimensional sparse class. Handles the reference counting for // all the derived classes. template class Sparse { public: typedef T element_type; protected: //-------------------------------------------------------------------- // The real representation of all Sparse arrays. //-------------------------------------------------------------------- class OCTAVE_API SparseRep { public: T *d; octave_idx_type *r; octave_idx_type *c; octave_idx_type nzmx; octave_idx_type nrows; octave_idx_type ncols; octave_refcount count; SparseRep (void) : d (0), r (0), c (new octave_idx_type [1]), nzmx (0), nrows (0), ncols (0), count (1) { c[0] = 0; } SparseRep (octave_idx_type n) : d (0), r (0), c (new octave_idx_type [n+1]), nzmx (0), nrows (n), ncols (n), count (1) { for (octave_idx_type i = 0; i < n + 1; i++) c[i] = 0; } SparseRep (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz = 0) : d (nz > 0 ? new T [nz] : 0), r (nz > 0 ? new octave_idx_type [nz] : 0), c (new octave_idx_type [nc+1]), nzmx (nz), nrows (nr), ncols (nc), count (1) { for (octave_idx_type i = 0; i < nc + 1; i++) c[i] = 0; } SparseRep (const SparseRep& a) : d (new T [a.nzmx]), r (new octave_idx_type [a.nzmx]), c (new octave_idx_type [a.ncols + 1]), nzmx (a.nzmx), nrows (a.nrows), ncols (a.ncols), count (1) { octave_idx_type nz = a.nnz (); std::copy (a.d, a.d + nz, d); std::copy (a.r, a.r + nz, r); std::copy (a.c, a.c + ncols + 1, c); } ~SparseRep (void) { delete [] d; delete [] r; delete [] c; } octave_idx_type length (void) const { return nzmx; } octave_idx_type nnz (void) const { return c[ncols]; } T& elem (octave_idx_type _r, octave_idx_type _c); T celem (octave_idx_type _r, octave_idx_type _c) const; T& data (octave_idx_type i) { return d[i]; } T cdata (octave_idx_type i) const { return d[i]; } octave_idx_type& ridx (octave_idx_type i) { return r[i]; } octave_idx_type cridx (octave_idx_type i) const { return r[i]; } octave_idx_type& cidx (octave_idx_type i) { return c[i]; } octave_idx_type ccidx (octave_idx_type i) const { return c[i]; } void maybe_compress (bool remove_zeros); void change_length (octave_idx_type nz); bool indices_ok (void) const; private: // No assignment! SparseRep& operator = (const SparseRep& a); }; //-------------------------------------------------------------------- void make_unique (void) { if (rep->count > 1) { SparseRep *r = new SparseRep (*rep); if (--rep->count == 0) delete rep; rep = r; } } public: // !!! WARNING !!! -- these should be protected, not public. You // should not access these data members directly! typename Sparse::SparseRep *rep; dim_vector dimensions; private: typename Sparse::SparseRep *nil_rep (void) const { static typename Sparse::SparseRep nr; return &nr; } public: Sparse (void) : rep (nil_rep ()), dimensions (dim_vector(0,0)) { rep->count++; } explicit Sparse (octave_idx_type n) : rep (new typename Sparse::SparseRep (n)), dimensions (dim_vector (n, n)) { } explicit Sparse (octave_idx_type nr, octave_idx_type nc) : rep (new typename Sparse::SparseRep (nr, nc)), dimensions (dim_vector (nr, nc)) { } explicit Sparse (octave_idx_type nr, octave_idx_type nc, T val); Sparse (const dim_vector& dv, octave_idx_type nz) : rep (new typename Sparse::SparseRep (dv(0), dv(1), nz)), dimensions (dv) { } Sparse (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz) : rep (new typename Sparse::SparseRep (nr, nc, nz)), dimensions (dim_vector (nr, nc)) { } // Both SparseMatrix and SparseBoolMatrix need this ctor, and this // is their only common ancestor. explicit Sparse (const PermMatrix& a); // Type conversion case. Preserves capacity (). template Sparse (const Sparse& a) : rep (new typename Sparse::SparseRep (a.rep->nrows, a.rep->ncols, a.rep->nzmx)), dimensions (a.dimensions) { octave_idx_type nz = a.nnz (); std::copy (a.rep->d, a.rep->d + nz, rep->d); std::copy (a.rep->r, a.rep->r + nz, rep->r); std::copy (a.rep->c, a.rep->c + rep->ncols + 1, rep->c); } // No type conversion case. Sparse (const Sparse& a) : rep (a.rep), dimensions (a.dimensions) { rep->count++; } public: Sparse (const dim_vector& dv); Sparse (const Sparse& a, const dim_vector& dv); Sparse (const Array& a, const idx_vector& r, const idx_vector& c, octave_idx_type nr = -1, octave_idx_type nc = -1, bool sum_terms = true, octave_idx_type nzm = -1); // Sparsify a normal matrix Sparse (const Array& a); virtual ~Sparse (void); Sparse& operator = (const Sparse& a); // Note that nzmax and capacity are the amount of storage for // nonzero elements, while nnz is the actual number of nonzero // terms. octave_idx_type nzmax (void) const { return rep->length (); } octave_idx_type capacity (void) const { return nzmax (); } octave_idx_type nnz (void) const { return rep->nnz (); } // Querying the number of elements (incl. zeros) may overflow the index type, // so don't do it unless you really need it. octave_idx_type numel (void) const { return dimensions.safe_numel (); } octave_idx_type nelem (void) const { return capacity (); } octave_idx_type length (void) const { return numel (); } octave_idx_type dim1 (void) const { return dimensions(0); } octave_idx_type dim2 (void) const { return dimensions(1); } octave_idx_type rows (void) const { return dim1 (); } octave_idx_type cols (void) const { return dim2 (); } octave_idx_type columns (void) const { return dim2 (); } octave_idx_type get_row_index (octave_idx_type k) { return ridx (k); } octave_idx_type get_col_index (octave_idx_type k) { octave_idx_type ret = 0; while (cidx (ret+1) < k) ret++; return ret; } size_t byte_size (void) const { return (static_cast(cols () + 1) * sizeof (octave_idx_type) + static_cast (capacity ()) * (sizeof (T) + sizeof (octave_idx_type))); } dim_vector dims (void) const { return dimensions; } Sparse squeeze (void) const { return *this; } octave_idx_type compute_index (const Array& ra_idx) const; T range_error (const char *fcn, octave_idx_type n) const; T& range_error (const char *fcn, octave_idx_type n); T range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const; T& range_error (const char *fcn, octave_idx_type i, octave_idx_type j); T range_error (const char *fcn, const Array& ra_idx) const; T& range_error (const char *fcn, const Array& ra_idx); // No checking, even for multiple references, ever. T& xelem (octave_idx_type n) { octave_idx_type i = n % rows (); octave_idx_type j = n / rows (); return xelem (i, j); } T xelem (octave_idx_type n) const { octave_idx_type i = n % rows (); octave_idx_type j = n / rows (); return xelem (i, j); } T& xelem (octave_idx_type i, octave_idx_type j) { return rep->elem (i, j); } T xelem (octave_idx_type i, octave_idx_type j) const { return rep->celem (i, j); } T& xelem (const Array& ra_idx) { return xelem (compute_index (ra_idx)); } T xelem (const Array& ra_idx) const { return xelem (compute_index (ra_idx)); } // FIXME: would be nice to fix this so that we don't // unnecessarily force a copy, but that is not so easy, and I see no // clean way to do it. T& checkelem (octave_idx_type n) { if (n < 0 || n >= numel ()) return range_error ("T& Sparse::checkelem", n); else { make_unique (); return xelem (n); } } T& checkelem (octave_idx_type i, octave_idx_type j) { if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ()) return range_error ("T& Sparse::checkelem", i, j); else { make_unique (); return xelem (i, j); } } T& checkelem (const Array& ra_idx) { octave_idx_type i = compute_index (ra_idx); if (i < 0) return range_error ("T& Sparse::checkelem", ra_idx); else return elem (i); } T& elem (octave_idx_type n) { make_unique (); return xelem (n); } T& elem (octave_idx_type i, octave_idx_type j) { make_unique (); return xelem (i, j); } T& elem (const Array& ra_idx) { return Sparse::elem (compute_index (ra_idx)); } #if defined (BOUNDS_CHECKING) T& operator () (octave_idx_type n) { return checkelem (n); } T& operator () (octave_idx_type i, octave_idx_type j) { return checkelem (i, j); } T& operator () (const Array& ra_idx) { return checkelem (ra_idx); } #else T& operator () (octave_idx_type n) { return elem (n); } T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); } T& operator () (const Array& ra_idx) { return elem (ra_idx); } #endif T checkelem (octave_idx_type n) const { if (n < 0 || n >= numel ()) return range_error ("T Sparse::checkelem", n); else return xelem (n); } T checkelem (octave_idx_type i, octave_idx_type j) const { if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ()) return range_error ("T Sparse::checkelem", i, j); else return xelem (i, j); } T checkelem (const Array& ra_idx) const { octave_idx_type i = compute_index (ra_idx); if (i < 0) return range_error ("T Sparse::checkelem", ra_idx); else return Sparse::elem (i); } T elem (octave_idx_type n) const { return xelem (n); } T elem (octave_idx_type i, octave_idx_type j) const { return xelem (i, j); } T elem (const Array& ra_idx) const { return Sparse::elem (compute_index (ra_idx)); } #if defined (BOUNDS_CHECKING) T operator () (octave_idx_type n) const { return checkelem (n); } T operator () (octave_idx_type i, octave_idx_type j) const { return checkelem (i, j); } T operator () (const Array& ra_idx) const { return checkelem (ra_idx); } #else T operator () (octave_idx_type n) const { return elem (n); } T operator () (octave_idx_type i, octave_idx_type j) const { return elem (i, j); } T operator () (const Array& ra_idx) const { return elem (ra_idx); } #endif Sparse maybe_compress (bool remove_zeros = false) { if (remove_zeros) make_unique (); // Needs to unshare because elements are removed. rep->maybe_compress (remove_zeros); return (*this); } Sparse reshape (const dim_vector& new_dims) const; Sparse permute (const Array& vec, bool inv = false) const; Sparse ipermute (const Array& vec) const { return permute (vec, true); } void resize1 (octave_idx_type n); void resize (octave_idx_type r, octave_idx_type c); void resize (const dim_vector& dv); void change_capacity (octave_idx_type nz) { if (nz < nnz ()) make_unique (); // Unshare now because elements will be truncated. rep->change_length (nz); } Sparse& insert (const Sparse& a, octave_idx_type r, octave_idx_type c); Sparse& insert (const Sparse& a, const Array& idx); bool is_square (void) const { return (dim1 () == dim2 ()); } bool is_empty (void) const { return (rows () < 1 && cols () < 1); } Sparse transpose (void) const; T* data (void) { make_unique (); return rep->d; } T& data (octave_idx_type i) { make_unique (); return rep->data (i); } T* xdata (void) { return rep->d; } T& xdata (octave_idx_type i) { return rep->data (i); } T data (octave_idx_type i) const { return rep->data (i); } // FIXME: shouldn't this be returning const T*? T* data (void) const { return rep->d; } octave_idx_type* ridx (void) { make_unique (); return rep->r; } octave_idx_type& ridx (octave_idx_type i) { make_unique (); return rep->ridx (i); } octave_idx_type* xridx (void) { return rep->r; } octave_idx_type& xridx (octave_idx_type i) { return rep->ridx (i); } octave_idx_type ridx (octave_idx_type i) const { return rep->cridx (i); } // FIXME: shouldn't this be returning const octave_idx_type*? octave_idx_type* ridx (void) const { return rep->r; } octave_idx_type* cidx (void) { make_unique (); return rep->c; } octave_idx_type& cidx (octave_idx_type i) { make_unique (); return rep->cidx (i); } octave_idx_type* xcidx (void) { return rep->c; } octave_idx_type& xcidx (octave_idx_type i) { return rep->cidx (i); } octave_idx_type cidx (octave_idx_type i) const { return rep->ccidx (i); } // FIXME: shouldn't this be returning const octave_idx_type*? octave_idx_type* cidx (void) const { return rep->c; } octave_idx_type ndims (void) const { return dimensions.length (); } void delete_elements (const idx_vector& i); void delete_elements (int dim, const idx_vector& i); void delete_elements (const idx_vector& i, const idx_vector& j); Sparse index (const idx_vector& i, bool resize_ok = false) const; Sparse index (const idx_vector& i, const idx_vector& j, bool resize_ok = false) const; void assign (const idx_vector& i, const Sparse& rhs); void assign (const idx_vector& i, const idx_vector& j, const Sparse& rhs); void print_info (std::ostream& os, const std::string& prefix) const; // Unsafe. These functions exist to support the MEX interface. // You should not use them anywhere else. void *mex_get_data (void) const { return const_cast (data ()); } octave_idx_type *mex_get_ir (void) const { return const_cast (ridx ()); } octave_idx_type *mex_get_jc (void) const { return const_cast (cidx ()); } Sparse sort (octave_idx_type dim = 0, sortmode mode = ASCENDING) const; Sparse sort (Array &sidx, octave_idx_type dim = 0, sortmode mode = ASCENDING) const; Sparse diag (octave_idx_type k = 0) const; // dim = -1 and dim = -2 are special; see Array::cat description. static Sparse cat (int dim, octave_idx_type n, const Sparse *sparse_list); Array array_value (void) const; // Generic any/all test functionality with arbitrary predicate. template bool test (F fcn) const { return any_all_test (fcn, data (), nnz ()); } // Simpler calls. template bool test_any (F fcn) const { return test (fcn); } template bool test_all (F fcn) const { return test (fcn); } // Overloads for function references. bool test_any (bool (&fcn) (T)) const { return test (fcn); } bool test_any (bool (&fcn) (const T&)) const { return test (fcn); } bool test_all (bool (&fcn) (T)) const { return test (fcn); } bool test_all (bool (&fcn) (const T&)) const { return test (fcn); } template Sparse map (F fcn) const { Sparse result; U f_zero = fcn (0.); if (f_zero != 0.) { octave_idx_type nr = rows (); octave_idx_type nc = cols (); result = Sparse (nr, nc, f_zero); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = cidx (j); i < cidx (j+1); i++) { octave_quit (); /* Use data instead of elem for better performance. */ result.data (ridx (i) + j * nr) = fcn (data (i)); } result.maybe_compress (true); } else { octave_idx_type nz = nnz (); octave_idx_type nr = rows (); octave_idx_type nc = cols (); result = Sparse (nr, nc, nz); octave_idx_type ii = 0; result.cidx (ii) = 0; for (octave_idx_type j = 0; j < nc; j++) { for (octave_idx_type i = cidx (j); i < cidx (j+1); i++) { U val = fcn (data (i)); if (val != 0.0) { result.data (ii) = val; result.ridx (ii++) = ridx (i); } octave_quit (); } result.cidx (j+1) = ii; } result.maybe_compress (false); } return result; } // Overloads for function references. template Sparse map (U (&fcn) (T)) const { return map (fcn); } template Sparse map (U (&fcn) (const T&)) const { return map (fcn); } bool indices_ok (void) const { return rep->indices_ok (); } }; template std::istream& read_sparse_matrix (std::istream& is, Sparse& a, T (*read_fcn) (std::istream&)) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); octave_idx_type nz = a.nzmax (); if (nr > 0 && nc > 0) { octave_idx_type itmp; octave_idx_type jtmp; octave_idx_type iold = 0; octave_idx_type jold = 0; octave_idx_type ii = 0; T tmp; a.cidx (0) = 0; for (octave_idx_type i = 0; i < nz; i++) { itmp = 0; jtmp = 0; is >> itmp; itmp--; is >> jtmp; jtmp--; if (itmp < 0 || itmp >= nr) { (*current_liboctave_error_handler) ("invalid sparse matrix: row index = %d out of range", itmp + 1); is.setstate (std::ios::failbit); goto done; } if (jtmp < 0 || jtmp >= nc) { (*current_liboctave_error_handler) ("invalid sparse matrix: column index = %d out of range", jtmp + 1); is.setstate (std::ios::failbit); goto done; } if (jtmp < jold) { (*current_liboctave_error_handler) ("invalid sparse matrix: column indices must appear in ascending order"); is.setstate (std::ios::failbit); goto done; } else if (jtmp > jold) { for (octave_idx_type j = jold; j < jtmp; j++) a.cidx (j+1) = ii; } else if (itmp < iold) { (*current_liboctave_error_handler) ("invalid sparse matrix: row indices must appear in ascending order in each column"); is.setstate (std::ios::failbit); goto done; } iold = itmp; jold = jtmp; tmp = read_fcn (is); if (is) { a.data (ii) = tmp; a.ridx (ii++) = itmp; } else goto done; } for (octave_idx_type j = jold; j < nc; j++) a.cidx (j+1) = ii; } done: return is; } #endif