// Template sparse classes
/*
Copyright (C) 2004-2015 David Bateman
Copyright (C) 1998-2004 Andy Adler
Copyright (C) 2010 VZLU Prague
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
.
*/
#if !defined (octave_Sparse_h)
#define octave_Sparse_h 1
#include
#include
#include
#include
#include "Array.h"
#include "dim-vector.h"
#include "lo-error.h"
#include "lo-utils.h"
#include "oct-sort.h"
class idx_vector;
class PermMatrix;
// Two dimensional sparse class. Handles the reference counting for
// all the derived classes.
template
class
Sparse
{
public:
typedef T element_type;
protected:
//--------------------------------------------------------------------
// The real representation of all Sparse arrays.
//--------------------------------------------------------------------
class OCTAVE_API SparseRep
{
public:
T *d;
octave_idx_type *r;
octave_idx_type *c;
octave_idx_type nzmx;
octave_idx_type nrows;
octave_idx_type ncols;
octave_refcount count;
SparseRep (void)
: d (0), r (0), c (new octave_idx_type [1]), nzmx (0), nrows (0),
ncols (0), count (1)
{
c[0] = 0;
}
SparseRep (octave_idx_type n)
: d (0), r (0), c (new octave_idx_type [n+1]), nzmx (0), nrows (n),
ncols (n), count (1)
{
for (octave_idx_type i = 0; i < n + 1; i++)
c[i] = 0;
}
SparseRep (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz = 0)
: d (nz > 0 ? new T [nz] : 0),
r (nz > 0 ? new octave_idx_type [nz] : 0),
c (new octave_idx_type [nc+1]), nzmx (nz), nrows (nr),
ncols (nc), count (1)
{
for (octave_idx_type i = 0; i < nc + 1; i++)
c[i] = 0;
}
SparseRep (const SparseRep& a)
: d (new T [a.nzmx]), r (new octave_idx_type [a.nzmx]),
c (new octave_idx_type [a.ncols + 1]),
nzmx (a.nzmx), nrows (a.nrows), ncols (a.ncols), count (1)
{
octave_idx_type nz = a.nnz ();
std::copy (a.d, a.d + nz, d);
std::copy (a.r, a.r + nz, r);
std::copy (a.c, a.c + ncols + 1, c);
}
~SparseRep (void) { delete [] d; delete [] r; delete [] c; }
octave_idx_type length (void) const { return nzmx; }
octave_idx_type nnz (void) const { return c[ncols]; }
T& elem (octave_idx_type _r, octave_idx_type _c);
T celem (octave_idx_type _r, octave_idx_type _c) const;
T& data (octave_idx_type i) { return d[i]; }
T cdata (octave_idx_type i) const { return d[i]; }
octave_idx_type& ridx (octave_idx_type i) { return r[i]; }
octave_idx_type cridx (octave_idx_type i) const { return r[i]; }
octave_idx_type& cidx (octave_idx_type i) { return c[i]; }
octave_idx_type ccidx (octave_idx_type i) const { return c[i]; }
void maybe_compress (bool remove_zeros);
void change_length (octave_idx_type nz);
bool indices_ok (void) const;
private:
// No assignment!
SparseRep& operator = (const SparseRep& a);
};
//--------------------------------------------------------------------
void make_unique (void)
{
if (rep->count > 1)
{
SparseRep *r = new SparseRep (*rep);
if (--rep->count == 0)
delete rep;
rep = r;
}
}
public:
// !!! WARNING !!! -- these should be protected, not public. You
// should not access these data members directly!
typename Sparse::SparseRep *rep;
dim_vector dimensions;
private:
typename Sparse::SparseRep *nil_rep (void) const
{
static typename Sparse::SparseRep nr;
return &nr;
}
public:
Sparse (void)
: rep (nil_rep ()), dimensions (dim_vector(0,0))
{
rep->count++;
}
explicit Sparse (octave_idx_type n)
: rep (new typename Sparse::SparseRep (n)),
dimensions (dim_vector (n, n)) { }
explicit Sparse (octave_idx_type nr, octave_idx_type nc)
: rep (new typename Sparse::SparseRep (nr, nc)),
dimensions (dim_vector (nr, nc)) { }
explicit Sparse (octave_idx_type nr, octave_idx_type nc, T val);
Sparse (const dim_vector& dv, octave_idx_type nz)
: rep (new typename Sparse::SparseRep (dv(0), dv(1), nz)),
dimensions (dv) { }
Sparse (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz)
: rep (new typename Sparse::SparseRep (nr, nc, nz)),
dimensions (dim_vector (nr, nc)) { }
// Both SparseMatrix and SparseBoolMatrix need this ctor, and this
// is their only common ancestor.
explicit Sparse (const PermMatrix& a);
// Type conversion case. Preserves capacity ().
template
Sparse (const Sparse& a)
: rep (new typename Sparse::SparseRep (a.rep->nrows, a.rep->ncols,
a.rep->nzmx)),
dimensions (a.dimensions)
{
octave_idx_type nz = a.nnz ();
std::copy (a.rep->d, a.rep->d + nz, rep->d);
std::copy (a.rep->r, a.rep->r + nz, rep->r);
std::copy (a.rep->c, a.rep->c + rep->ncols + 1, rep->c);
}
// No type conversion case.
Sparse (const Sparse& a)
: rep (a.rep), dimensions (a.dimensions)
{
rep->count++;
}
public:
Sparse (const dim_vector& dv);
Sparse (const Sparse& a, const dim_vector& dv);
Sparse (const Array& a, const idx_vector& r, const idx_vector& c,
octave_idx_type nr = -1, octave_idx_type nc = -1,
bool sum_terms = true, octave_idx_type nzm = -1);
// Sparsify a normal matrix
Sparse (const Array& a);
virtual ~Sparse (void);
Sparse& operator = (const Sparse& a);
// Note that nzmax and capacity are the amount of storage for
// nonzero elements, while nnz is the actual number of nonzero
// terms.
octave_idx_type nzmax (void) const { return rep->length (); }
octave_idx_type capacity (void) const { return nzmax (); }
octave_idx_type nnz (void) const { return rep->nnz (); }
// Querying the number of elements (incl. zeros) may overflow the index type,
// so don't do it unless you really need it.
octave_idx_type numel (void) const
{
return dimensions.safe_numel ();
}
octave_idx_type nelem (void) const { return capacity (); }
octave_idx_type length (void) const { return numel (); }
octave_idx_type dim1 (void) const { return dimensions(0); }
octave_idx_type dim2 (void) const { return dimensions(1); }
octave_idx_type rows (void) const { return dim1 (); }
octave_idx_type cols (void) const { return dim2 (); }
octave_idx_type columns (void) const { return dim2 (); }
octave_idx_type get_row_index (octave_idx_type k) { return ridx (k); }
octave_idx_type get_col_index (octave_idx_type k)
{
octave_idx_type ret = 0;
while (cidx (ret+1) < k)
ret++;
return ret;
}
size_t byte_size (void) const
{
return (static_cast(cols () + 1) * sizeof (octave_idx_type)
+ static_cast (capacity ())
* (sizeof (T) + sizeof (octave_idx_type)));
}
dim_vector dims (void) const { return dimensions; }
Sparse squeeze (void) const { return *this; }
octave_idx_type compute_index (const Array& ra_idx) const;
T range_error (const char *fcn, octave_idx_type n) const;
T& range_error (const char *fcn, octave_idx_type n);
T range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const;
T& range_error (const char *fcn, octave_idx_type i, octave_idx_type j);
T range_error (const char *fcn, const Array& ra_idx) const;
T& range_error (const char *fcn, const Array& ra_idx);
// No checking, even for multiple references, ever.
T& xelem (octave_idx_type n)
{
octave_idx_type i = n % rows ();
octave_idx_type j = n / rows ();
return xelem (i, j);
}
T xelem (octave_idx_type n) const
{
octave_idx_type i = n % rows ();
octave_idx_type j = n / rows ();
return xelem (i, j);
}
T& xelem (octave_idx_type i, octave_idx_type j) { return rep->elem (i, j); }
T xelem (octave_idx_type i, octave_idx_type j) const
{
return rep->celem (i, j);
}
T& xelem (const Array& ra_idx)
{ return xelem (compute_index (ra_idx)); }
T xelem (const Array& ra_idx) const
{ return xelem (compute_index (ra_idx)); }
// FIXME: would be nice to fix this so that we don't
// unnecessarily force a copy, but that is not so easy, and I see no
// clean way to do it.
T& checkelem (octave_idx_type n)
{
if (n < 0 || n >= numel ())
return range_error ("T& Sparse::checkelem", n);
else
{
make_unique ();
return xelem (n);
}
}
T& checkelem (octave_idx_type i, octave_idx_type j)
{
if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
return range_error ("T& Sparse::checkelem", i, j);
else
{
make_unique ();
return xelem (i, j);
}
}
T& checkelem (const Array& ra_idx)
{
octave_idx_type i = compute_index (ra_idx);
if (i < 0)
return range_error ("T& Sparse::checkelem", ra_idx);
else
return elem (i);
}
T& elem (octave_idx_type n)
{
make_unique ();
return xelem (n);
}
T& elem (octave_idx_type i, octave_idx_type j)
{
make_unique ();
return xelem (i, j);
}
T& elem (const Array& ra_idx)
{ return Sparse::elem (compute_index (ra_idx)); }
#if defined (BOUNDS_CHECKING)
T& operator () (octave_idx_type n)
{
return checkelem (n);
}
T& operator () (octave_idx_type i, octave_idx_type j)
{
return checkelem (i, j);
}
T& operator () (const Array& ra_idx)
{
return checkelem (ra_idx);
}
#else
T& operator () (octave_idx_type n)
{
return elem (n);
}
T& operator () (octave_idx_type i, octave_idx_type j)
{
return elem (i, j);
}
T& operator () (const Array& ra_idx)
{
return elem (ra_idx);
}
#endif
T checkelem (octave_idx_type n) const
{
if (n < 0 || n >= numel ())
return range_error ("T Sparse::checkelem", n);
else
return xelem (n);
}
T checkelem (octave_idx_type i, octave_idx_type j) const
{
if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
return range_error ("T Sparse::checkelem", i, j);
else
return xelem (i, j);
}
T checkelem (const Array& ra_idx) const
{
octave_idx_type i = compute_index (ra_idx);
if (i < 0)
return range_error ("T Sparse::checkelem", ra_idx);
else
return Sparse::elem (i);
}
T elem (octave_idx_type n) const { return xelem (n); }
T elem (octave_idx_type i, octave_idx_type j) const { return xelem (i, j); }
T elem (const Array& ra_idx) const
{ return Sparse::elem (compute_index (ra_idx)); }
#if defined (BOUNDS_CHECKING)
T operator () (octave_idx_type n) const { return checkelem (n); }
T operator () (octave_idx_type i, octave_idx_type j) const
{
return checkelem (i, j);
}
T operator () (const Array& ra_idx) const
{
return checkelem (ra_idx);
}
#else
T operator () (octave_idx_type n) const { return elem (n); }
T operator () (octave_idx_type i, octave_idx_type j) const
{
return elem (i, j);
}
T operator () (const Array& ra_idx) const
{
return elem (ra_idx);
}
#endif
Sparse maybe_compress (bool remove_zeros = false)
{
if (remove_zeros)
make_unique (); // Needs to unshare because elements are removed.
rep->maybe_compress (remove_zeros);
return (*this);
}
Sparse reshape (const dim_vector& new_dims) const;
Sparse permute (const Array& vec, bool inv = false) const;
Sparse ipermute (const Array& vec) const
{
return permute (vec, true);
}
void resize1 (octave_idx_type n);
void resize (octave_idx_type r, octave_idx_type c);
void resize (const dim_vector& dv);
void change_capacity (octave_idx_type nz)
{
if (nz < nnz ())
make_unique (); // Unshare now because elements will be truncated.
rep->change_length (nz);
}
Sparse& insert (const Sparse& a, octave_idx_type r, octave_idx_type c);
Sparse& insert (const Sparse& a, const Array& idx);
bool is_square (void) const { return (dim1 () == dim2 ()); }
bool is_empty (void) const { return (rows () < 1 && cols () < 1); }
Sparse transpose (void) const;
T* data (void) { make_unique (); return rep->d; }
T& data (octave_idx_type i) { make_unique (); return rep->data (i); }
T* xdata (void) { return rep->d; }
T& xdata (octave_idx_type i) { return rep->data (i); }
T data (octave_idx_type i) const { return rep->data (i); }
// FIXME: shouldn't this be returning const T*?
T* data (void) const { return rep->d; }
octave_idx_type* ridx (void) { make_unique (); return rep->r; }
octave_idx_type& ridx (octave_idx_type i)
{
make_unique (); return rep->ridx (i);
}
octave_idx_type* xridx (void) { return rep->r; }
octave_idx_type& xridx (octave_idx_type i) { return rep->ridx (i); }
octave_idx_type ridx (octave_idx_type i) const { return rep->cridx (i); }
// FIXME: shouldn't this be returning const octave_idx_type*?
octave_idx_type* ridx (void) const { return rep->r; }
octave_idx_type* cidx (void) { make_unique (); return rep->c; }
octave_idx_type& cidx (octave_idx_type i)
{
make_unique (); return rep->cidx (i);
}
octave_idx_type* xcidx (void) { return rep->c; }
octave_idx_type& xcidx (octave_idx_type i) { return rep->cidx (i); }
octave_idx_type cidx (octave_idx_type i) const { return rep->ccidx (i); }
// FIXME: shouldn't this be returning const octave_idx_type*?
octave_idx_type* cidx (void) const { return rep->c; }
octave_idx_type ndims (void) const { return dimensions.length (); }
void delete_elements (const idx_vector& i);
void delete_elements (int dim, const idx_vector& i);
void delete_elements (const idx_vector& i, const idx_vector& j);
Sparse index (const idx_vector& i, bool resize_ok = false) const;
Sparse index (const idx_vector& i, const idx_vector& j,
bool resize_ok = false) const;
void assign (const idx_vector& i, const Sparse& rhs);
void assign (const idx_vector& i, const idx_vector& j, const Sparse& rhs);
void print_info (std::ostream& os, const std::string& prefix) const;
// Unsafe. These functions exist to support the MEX interface.
// You should not use them anywhere else.
void *mex_get_data (void) const { return const_cast (data ()); }
octave_idx_type *mex_get_ir (void) const
{
return const_cast (ridx ());
}
octave_idx_type *mex_get_jc (void) const
{
return const_cast (cidx ());
}
Sparse sort (octave_idx_type dim = 0, sortmode mode = ASCENDING) const;
Sparse sort (Array &sidx, octave_idx_type dim = 0,
sortmode mode = ASCENDING) const;
Sparse diag (octave_idx_type k = 0) const;
// dim = -1 and dim = -2 are special; see Array::cat description.
static Sparse
cat (int dim, octave_idx_type n, const Sparse *sparse_list);
Array array_value (void) const;
// Generic any/all test functionality with arbitrary predicate.
template
bool test (F fcn) const
{
return any_all_test (fcn, data (), nnz ());
}
// Simpler calls.
template
bool test_any (F fcn) const
{ return test (fcn); }
template
bool test_all (F fcn) const
{ return test (fcn); }
// Overloads for function references.
bool test_any (bool (&fcn) (T)) const
{ return test (fcn); }
bool test_any (bool (&fcn) (const T&)) const
{ return test (fcn); }
bool test_all (bool (&fcn) (T)) const
{ return test (fcn); }
bool test_all (bool (&fcn) (const T&)) const
{ return test (fcn); }
template
Sparse
map (F fcn) const
{
Sparse result;
U f_zero = fcn (0.);
if (f_zero != 0.)
{
octave_idx_type nr = rows ();
octave_idx_type nc = cols ();
result = Sparse (nr, nc, f_zero);
for (octave_idx_type j = 0; j < nc; j++)
for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
{
octave_quit ();
/* Use data instead of elem for better performance. */
result.data (ridx (i) + j * nr) = fcn (data (i));
}
result.maybe_compress (true);
}
else
{
octave_idx_type nz = nnz ();
octave_idx_type nr = rows ();
octave_idx_type nc = cols ();
result = Sparse (nr, nc, nz);
octave_idx_type ii = 0;
result.cidx (ii) = 0;
for (octave_idx_type j = 0; j < nc; j++)
{
for (octave_idx_type i = cidx (j); i < cidx (j+1); i++)
{
U val = fcn (data (i));
if (val != 0.0)
{
result.data (ii) = val;
result.ridx (ii++) = ridx (i);
}
octave_quit ();
}
result.cidx (j+1) = ii;
}
result.maybe_compress (false);
}
return result;
}
// Overloads for function references.
template
Sparse
map (U (&fcn) (T)) const
{ return map (fcn); }
template
Sparse
map (U (&fcn) (const T&)) const
{ return map (fcn); }
bool indices_ok (void) const { return rep->indices_ok (); }
};
template
std::istream&
read_sparse_matrix (std::istream& is, Sparse& a,
T (*read_fcn) (std::istream&))
{
octave_idx_type nr = a.rows ();
octave_idx_type nc = a.cols ();
octave_idx_type nz = a.nzmax ();
if (nr > 0 && nc > 0)
{
octave_idx_type itmp;
octave_idx_type jtmp;
octave_idx_type iold = 0;
octave_idx_type jold = 0;
octave_idx_type ii = 0;
T tmp;
a.cidx (0) = 0;
for (octave_idx_type i = 0; i < nz; i++)
{
itmp = 0; jtmp = 0;
is >> itmp;
itmp--;
is >> jtmp;
jtmp--;
if (itmp < 0 || itmp >= nr)
{
(*current_liboctave_error_handler)
("invalid sparse matrix: row index = %d out of range",
itmp + 1);
is.setstate (std::ios::failbit);
goto done;
}
if (jtmp < 0 || jtmp >= nc)
{
(*current_liboctave_error_handler)
("invalid sparse matrix: column index = %d out of range",
jtmp + 1);
is.setstate (std::ios::failbit);
goto done;
}
if (jtmp < jold)
{
(*current_liboctave_error_handler)
("invalid sparse matrix: column indices must appear in ascending order");
is.setstate (std::ios::failbit);
goto done;
}
else if (jtmp > jold)
{
for (octave_idx_type j = jold; j < jtmp; j++)
a.cidx (j+1) = ii;
}
else if (itmp < iold)
{
(*current_liboctave_error_handler)
("invalid sparse matrix: row indices must appear in ascending order in each column");
is.setstate (std::ios::failbit);
goto done;
}
iold = itmp;
jold = jtmp;
tmp = read_fcn (is);
if (is)
{
a.data (ii) = tmp;
a.ridx (ii++) = itmp;
}
else
goto done;
}
for (octave_idx_type j = jold; j < nc; j++)
a.cidx (j+1) = ii;
}
done:
return is;
}
#endif