/*
Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2009-2010 VZLU Prague, a.s.
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
.
*/
#if !defined (octave_mx_op_defs_h)
#define octave_mx_op_defs_h 1
#include "lo-array-gripes.h"
#include "mx-op-decl.h"
#include "mx-inlines.cc"
#define SNANCHK(s) \
if (xisnan (s)) \
gripe_nan_to_logical_conversion ()
#define MNANCHK(m, MT) \
if (do_mx_check (m, mx_inline_any_nan)) \
gripe_nan_to_logical_conversion ()
// vector by scalar operations.
#define VS_BIN_OP(R, F, OP, V, S) \
R \
F (const V& v, const S& s) \
{ \
return do_ms_binary_op (v, s, OP); \
}
#define VS_BIN_OPS(R, V, S) \
VS_BIN_OP (R, operator +, mx_inline_add, V, S) \
VS_BIN_OP (R, operator -, mx_inline_sub, V, S) \
VS_BIN_OP (R, operator *, mx_inline_mul, V, S) \
VS_BIN_OP (R, operator /, mx_inline_div, V, S)
// scalar by vector by operations.
#define SV_BIN_OP(R, F, OP, S, V) \
R \
F (const S& s, const V& v) \
{ \
return do_sm_binary_op (s, v, OP); \
}
#define SV_BIN_OPS(R, S, V) \
SV_BIN_OP (R, operator +, mx_inline_add, S, V) \
SV_BIN_OP (R, operator -, mx_inline_sub, S, V) \
SV_BIN_OP (R, operator *, mx_inline_mul, S, V) \
SV_BIN_OP (R, operator /, mx_inline_div, S, V)
// vector by vector operations.
#define VV_BIN_OP(R, F, OP, V1, V2) \
R \
F (const V1& v1, const V2& v2) \
{ \
return do_mm_binary_op (v1, v2, OP, OP, OP, #F); \
}
#define VV_BIN_OPS(R, V1, V2) \
VV_BIN_OP (R, operator +, mx_inline_add, V1, V2) \
VV_BIN_OP (R, operator -, mx_inline_sub, V1, V2) \
VV_BIN_OP (R, product, mx_inline_mul, V1, V2) \
VV_BIN_OP (R, quotient, mx_inline_div, V1, V2)
// matrix by scalar operations.
#define MS_BIN_OP(R, OP, M, S, F) \
R \
OP (const M& m, const S& s) \
{ \
return do_ms_binary_op (m, s, F); \
}
#define MS_BIN_OPS(R, M, S) \
MS_BIN_OP (R, operator +, M, S, mx_inline_add) \
MS_BIN_OP (R, operator -, M, S, mx_inline_sub) \
MS_BIN_OP (R, operator *, M, S, mx_inline_mul) \
MS_BIN_OP (R, operator /, M, S, mx_inline_div)
#define MS_CMP_OP(F, OP, M, S) \
boolMatrix \
F (const M& m, const S& s) \
{ \
return do_ms_binary_op (m, s, OP); \
}
#define MS_CMP_OPS(M, S) \
MS_CMP_OP (mx_el_lt, mx_inline_lt, M, S) \
MS_CMP_OP (mx_el_le, mx_inline_le, M, S) \
MS_CMP_OP (mx_el_ge, mx_inline_ge, M, S) \
MS_CMP_OP (mx_el_gt, mx_inline_gt, M, S) \
MS_CMP_OP (mx_el_eq, mx_inline_eq, M, S) \
MS_CMP_OP (mx_el_ne, mx_inline_ne, M, S)
#define MS_BOOL_OP(F, OP, M, S) \
boolMatrix \
F (const M& m, const S& s) \
{ \
MNANCHK (m, M::element_type); \
SNANCHK (s); \
return do_ms_binary_op (m, s, OP); \
}
#define MS_BOOL_OPS(M, S) \
MS_BOOL_OP (mx_el_and, mx_inline_and, M, S) \
MS_BOOL_OP (mx_el_or, mx_inline_or, M, S)
// scalar by matrix operations.
#define SM_BIN_OP(R, OP, S, M, F) \
R \
OP (const S& s, const M& m) \
{ \
return do_sm_binary_op (s, m, F); \
}
#define SM_BIN_OPS(R, S, M) \
SM_BIN_OP (R, operator +, S, M, mx_inline_add) \
SM_BIN_OP (R, operator -, S, M, mx_inline_sub) \
SM_BIN_OP (R, operator *, S, M, mx_inline_mul) \
SM_BIN_OP (R, operator /, S, M, mx_inline_div)
#define SM_CMP_OP(F, OP, S, M) \
boolMatrix \
F (const S& s, const M& m) \
{ \
return do_sm_binary_op (s, m, OP); \
}
#define SM_CMP_OPS(S, M) \
SM_CMP_OP (mx_el_lt, mx_inline_lt, S, M) \
SM_CMP_OP (mx_el_le, mx_inline_le, S, M) \
SM_CMP_OP (mx_el_ge, mx_inline_ge, S, M) \
SM_CMP_OP (mx_el_gt, mx_inline_gt, S, M) \
SM_CMP_OP (mx_el_eq, mx_inline_eq, S, M) \
SM_CMP_OP (mx_el_ne, mx_inline_ne, S, M)
#define SM_BOOL_OP(F, OP, S, M) \
boolMatrix \
F (const S& s, const M& m) \
{ \
SNANCHK (s); \
MNANCHK (m, M::element_type); \
return do_sm_binary_op (s, m, OP); \
}
#define SM_BOOL_OPS(S, M) \
SM_BOOL_OP (mx_el_and, mx_inline_and, S, M) \
SM_BOOL_OP (mx_el_or, mx_inline_or, S, M)
// matrix by matrix operations.
#define MM_BIN_OP(R, OP, M1, M2, F) \
R \
OP (const M1& m1, const M2& m2) \
{ \
return do_mm_binary_op (m1, m2, F, F, F, #OP); \
}
#define MM_BIN_OPS(R, M1, M2) \
MM_BIN_OP (R, operator +, M1, M2, mx_inline_add) \
MM_BIN_OP (R, operator -, M1, M2, mx_inline_sub) \
MM_BIN_OP (R, product, M1, M2, mx_inline_mul) \
MM_BIN_OP (R, quotient, M1, M2, mx_inline_div)
#define MM_CMP_OP(F, OP, M1, M2) \
boolMatrix \
F (const M1& m1, const M2& m2) \
{ \
return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \
}
#define MM_CMP_OPS(M1, M2) \
MM_CMP_OP (mx_el_lt, mx_inline_lt, M1, M2) \
MM_CMP_OP (mx_el_le, mx_inline_le, M1, M2) \
MM_CMP_OP (mx_el_ge, mx_inline_ge, M1, M2) \
MM_CMP_OP (mx_el_gt, mx_inline_gt, M1, M2) \
MM_CMP_OP (mx_el_eq, mx_inline_eq, M1, M2) \
MM_CMP_OP (mx_el_ne, mx_inline_ne, M1, M2)
#define MM_BOOL_OP(F, OP, M1, M2) \
boolMatrix \
F (const M1& m1, const M2& m2) \
{ \
MNANCHK (m1, M1::element_type); \
MNANCHK (m2, M2::element_type); \
return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \
}
#define MM_BOOL_OPS(M1, M2) \
MM_BOOL_OP (mx_el_and, mx_inline_and, M1, M2) \
MM_BOOL_OP (mx_el_or, mx_inline_or, M1, M2)
// N-d matrix by scalar operations.
#define NDS_BIN_OP(R, OP, ND, S, F) \
R \
OP (const ND& m, const S& s) \
{ \
return do_ms_binary_op (m, s, F); \
}
#define NDS_BIN_OPS(R, ND, S) \
NDS_BIN_OP (R, operator +, ND, S, mx_inline_add) \
NDS_BIN_OP (R, operator -, ND, S, mx_inline_sub) \
NDS_BIN_OP (R, operator *, ND, S, mx_inline_mul) \
NDS_BIN_OP (R, operator /, ND, S, mx_inline_div)
#define NDS_CMP_OP(F, OP, ND, S) \
boolNDArray \
F (const ND& m, const S& s) \
{ \
return do_ms_binary_op (m, s, OP); \
}
#define NDS_CMP_OPS(ND, S) \
NDS_CMP_OP (mx_el_lt, mx_inline_lt, ND, S) \
NDS_CMP_OP (mx_el_le, mx_inline_le, ND, S) \
NDS_CMP_OP (mx_el_ge, mx_inline_ge, ND, S) \
NDS_CMP_OP (mx_el_gt, mx_inline_gt, ND, S) \
NDS_CMP_OP (mx_el_eq, mx_inline_eq, ND, S) \
NDS_CMP_OP (mx_el_ne, mx_inline_ne, ND, S)
#define NDS_BOOL_OP(F, OP, ND, S) \
boolNDArray \
F (const ND& m, const S& s) \
{ \
MNANCHK (m, ND::element_type); \
SNANCHK (s); \
return do_ms_binary_op (m, s, OP); \
}
#define NDS_BOOL_OPS(ND, S) \
NDS_BOOL_OP (mx_el_and, mx_inline_and, ND, S) \
NDS_BOOL_OP (mx_el_or, mx_inline_or, ND, S) \
NDS_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND, S) \
NDS_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND, S) \
NDS_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND, S) \
NDS_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND, S)
// scalar by N-d matrix operations.
#define SND_BIN_OP(R, OP, S, ND, F) \
R \
OP (const S& s, const ND& m) \
{ \
return do_sm_binary_op (s, m, F); \
}
#define SND_BIN_OPS(R, S, ND) \
SND_BIN_OP (R, operator +, S, ND, mx_inline_add) \
SND_BIN_OP (R, operator -, S, ND, mx_inline_sub) \
SND_BIN_OP (R, operator *, S, ND, mx_inline_mul) \
SND_BIN_OP (R, operator /, S, ND, mx_inline_div)
#define SND_CMP_OP(F, OP, S, ND) \
boolNDArray \
F (const S& s, const ND& m) \
{ \
return do_sm_binary_op (s, m, OP); \
}
#define SND_CMP_OPS(S, ND) \
SND_CMP_OP (mx_el_lt, mx_inline_lt, S, ND) \
SND_CMP_OP (mx_el_le, mx_inline_le, S, ND) \
SND_CMP_OP (mx_el_ge, mx_inline_ge, S, ND) \
SND_CMP_OP (mx_el_gt, mx_inline_gt, S, ND) \
SND_CMP_OP (mx_el_eq, mx_inline_eq, S, ND) \
SND_CMP_OP (mx_el_ne, mx_inline_ne, S, ND)
#define SND_BOOL_OP(F, OP, S, ND) \
boolNDArray \
F (const S& s, const ND& m) \
{ \
SNANCHK (s); \
MNANCHK (m, ND::element_type); \
return do_sm_binary_op (s, m, OP); \
}
#define SND_BOOL_OPS(S, ND) \
SND_BOOL_OP (mx_el_and, mx_inline_and, S, ND) \
SND_BOOL_OP (mx_el_or, mx_inline_or, S, ND) \
SND_BOOL_OP (mx_el_not_and, mx_inline_not_and, S, ND) \
SND_BOOL_OP (mx_el_not_or, mx_inline_not_or, S, ND) \
SND_BOOL_OP (mx_el_and_not, mx_inline_and_not, S, ND) \
SND_BOOL_OP (mx_el_or_not, mx_inline_or_not, S, ND)
// N-d matrix by N-d matrix operations.
#define NDND_BIN_OP(R, OP, ND1, ND2, F) \
R \
OP (const ND1& m1, const ND2& m2) \
{ \
return do_mm_binary_op (m1, m2, F, F, F, #OP); \
}
#define NDND_BIN_OPS(R, ND1, ND2) \
NDND_BIN_OP (R, operator +, ND1, ND2, mx_inline_add) \
NDND_BIN_OP (R, operator -, ND1, ND2, mx_inline_sub) \
NDND_BIN_OP (R, product, ND1, ND2, mx_inline_mul) \
NDND_BIN_OP (R, quotient, ND1, ND2, mx_inline_div)
#define NDND_CMP_OP(F, OP, ND1, ND2) \
boolNDArray \
F (const ND1& m1, const ND2& m2) \
{ \
return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \
}
#define NDND_CMP_OPS(ND1, ND2) \
NDND_CMP_OP (mx_el_lt, mx_inline_lt, ND1, ND2) \
NDND_CMP_OP (mx_el_le, mx_inline_le, ND1, ND2) \
NDND_CMP_OP (mx_el_ge, mx_inline_ge, ND1, ND2) \
NDND_CMP_OP (mx_el_gt, mx_inline_gt, ND1, ND2) \
NDND_CMP_OP (mx_el_eq, mx_inline_eq, ND1, ND2) \
NDND_CMP_OP (mx_el_ne, mx_inline_ne, ND1, ND2)
#define NDND_BOOL_OP(F, OP, ND1, ND2) \
boolNDArray \
F (const ND1& m1, const ND2& m2) \
{ \
MNANCHK (m1, ND1::element_type); \
MNANCHK (m2, ND2::element_type); \
return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \
}
#define NDND_BOOL_OPS(ND1, ND2) \
NDND_BOOL_OP (mx_el_and, mx_inline_and, ND1, ND2) \
NDND_BOOL_OP (mx_el_or, mx_inline_or, ND1, ND2) \
NDND_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND1, ND2) \
NDND_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND1, ND2) \
NDND_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND1, ND2) \
NDND_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND1, ND2)
// scalar by diagonal matrix operations.
#define SDM_BIN_OP(R, OP, S, DM) \
R \
operator OP (const S& s, const DM& dm) \
{ \
R r (dm.rows (), dm.cols ()); \
\
for (octave_idx_type i = 0; i < dm.length (); i++) \
r.dgxelem (i) = s OP dm.dgelem (i); \
\
return r; \
}
#define SDM_BIN_OPS(R, S, DM) \
SDM_BIN_OP (R, *, S, DM)
// diagonal matrix by scalar operations.
#define DMS_BIN_OP(R, OP, DM, S) \
R \
operator OP (const DM& dm, const S& s) \
{ \
R r (dm.rows (), dm.cols ()); \
\
for (octave_idx_type i = 0; i < dm.length (); i++) \
r.dgxelem (i) = dm.dgelem (i) OP s; \
\
return r; \
}
#define DMS_BIN_OPS(R, DM, S) \
DMS_BIN_OP (R, *, DM, S) \
DMS_BIN_OP (R, /, DM, S)
// matrix by diagonal matrix operations.
#define MDM_BIN_OP(R, OP, M, DM, OPEQ) \
R \
OP (const M& m, const DM& dm) \
{ \
R r; \
\
octave_idx_type m_nr = m.rows (); \
octave_idx_type m_nc = m.cols (); \
\
octave_idx_type dm_nr = dm.rows (); \
octave_idx_type dm_nc = dm.cols (); \
\
if (m_nr != dm_nr || m_nc != dm_nc) \
gripe_nonconformant (#OP, m_nr, m_nc, dm_nr, dm_nc); \
else \
{ \
r.resize (m_nr, m_nc); \
\
if (m_nr > 0 && m_nc > 0) \
{ \
r = R (m); \
\
octave_idx_type len = dm.length (); \
\
for (octave_idx_type i = 0; i < len; i++) \
r.elem (i, i) OPEQ dm.elem (i, i); \
} \
} \
\
return r; \
}
#define MDM_MULTIPLY_OP(R, M, DM, R_ZERO) \
R \
operator * (const M& m, const DM& dm) \
{ \
R r; \
\
octave_idx_type m_nr = m.rows (); \
octave_idx_type m_nc = m.cols (); \
\
octave_idx_type dm_nr = dm.rows (); \
octave_idx_type dm_nc = dm.cols (); \
\
if (m_nc != dm_nr) \
gripe_nonconformant ("operator *", m_nr, m_nc, dm_nr, dm_nc); \
else \
{ \
r = R (m_nr, dm_nc); \
R::element_type *rd = r.fortran_vec (); \
const M::element_type *md = m.data (); \
const DM::element_type *dd = dm.data (); \
\
octave_idx_type len = dm.length (); \
for (octave_idx_type i = 0; i < len; i++) \
{ \
mx_inline_mul (m_nr, rd, md, dd[i]); \
rd += m_nr; md += m_nr; \
} \
mx_inline_fill (m_nr * (dm_nc - len), rd, R_ZERO); \
} \
\
return r; \
}
#define MDM_BIN_OPS(R, M, DM, R_ZERO) \
MDM_BIN_OP (R, operator +, M, DM, +=) \
MDM_BIN_OP (R, operator -, M, DM, -=) \
MDM_MULTIPLY_OP (R, M, DM, R_ZERO)
// diagonal matrix by matrix operations.
#define DMM_BIN_OP(R, OP, DM, M, OPEQ, PREOP) \
R \
OP (const DM& dm, const M& m) \
{ \
R r; \
\
octave_idx_type dm_nr = dm.rows (); \
octave_idx_type dm_nc = dm.cols (); \
\
octave_idx_type m_nr = m.rows (); \
octave_idx_type m_nc = m.cols (); \
\
if (dm_nr != m_nr || dm_nc != m_nc) \
gripe_nonconformant (#OP, dm_nr, dm_nc, m_nr, m_nc); \
else \
{ \
if (m_nr > 0 && m_nc > 0) \
{ \
r = R (PREOP m); \
\
octave_idx_type len = dm.length (); \
\
for (octave_idx_type i = 0; i < len; i++) \
r.elem (i, i) OPEQ dm.elem (i, i); \
} \
else \
r.resize (m_nr, m_nc); \
} \
\
return r; \
}
#define DMM_MULTIPLY_OP(R, DM, M, R_ZERO) \
R \
operator * (const DM& dm, const M& m) \
{ \
R r; \
\
octave_idx_type dm_nr = dm.rows (); \
octave_idx_type dm_nc = dm.cols (); \
\
octave_idx_type m_nr = m.rows (); \
octave_idx_type m_nc = m.cols (); \
\
if (dm_nc != m_nr) \
gripe_nonconformant ("operator *", dm_nr, dm_nc, m_nr, m_nc); \
else \
{ \
r = R (dm_nr, m_nc); \
R::element_type *rd = r.fortran_vec (); \
const M::element_type *md = m.data (); \
const DM::element_type *dd = dm.data (); \
\
octave_idx_type len = dm.length (); \
for (octave_idx_type i = 0; i < m_nc; i++) \
{ \
mx_inline_mul (len, rd, md, dd); \
rd += len; md += m_nr; \
mx_inline_fill (dm_nr - len, rd, R_ZERO); \
rd += dm_nr - len; \
} \
} \
\
return r; \
}
#define DMM_BIN_OPS(R, DM, M, R_ZERO) \
DMM_BIN_OP (R, operator +, DM, M, +=, ) \
DMM_BIN_OP (R, operator -, DM, M, +=, -) \
DMM_MULTIPLY_OP (R, DM, M, R_ZERO)
// diagonal matrix by diagonal matrix operations.
#define DMDM_BIN_OP(R, OP, DM1, DM2, F) \
R \
OP (const DM1& dm1, const DM2& dm2) \
{ \
R r; \
\
octave_idx_type dm1_nr = dm1.rows (); \
octave_idx_type dm1_nc = dm1.cols (); \
\
octave_idx_type dm2_nr = dm2.rows (); \
octave_idx_type dm2_nc = dm2.cols (); \
\
if (dm1_nr != dm2_nr || dm1_nc != dm2_nc) \
gripe_nonconformant (#OP, dm1_nr, dm1_nc, dm2_nr, dm2_nc); \
else \
{ \
r.resize (dm1_nr, dm1_nc); \
\
if (dm1_nr > 0 && dm1_nc > 0) \
F (dm1.length (), r.fortran_vec (), dm1.data (), dm2.data ()); \
} \
\
return r; \
}
#define DMDM_BIN_OPS(R, DM1, DM2) \
DMDM_BIN_OP (R, operator +, DM1, DM2, mx_inline_add) \
DMDM_BIN_OP (R, operator -, DM1, DM2, mx_inline_sub) \
DMDM_BIN_OP (R, product, DM1, DM2, mx_inline_mul)
// scalar by N-d array min/max ops
#define SND_MINMAX_FCN(FCN, OP, T, S) \
T \
FCN (S d, const T& m) \
{ \
return do_sm_binary_op (d, m, mx_inline_x##FCN); \
}
#define NDS_MINMAX_FCN(FCN, OP, T, S) \
T \
FCN (const T& m, S d) \
{ \
return do_ms_binary_op (m, d, mx_inline_x##FCN); \
}
#define NDND_MINMAX_FCN(FCN, OP, T, S) \
T \
FCN (const T& a, const T& b) \
{ \
return do_mm_binary_op (a, b, mx_inline_x##FCN, mx_inline_x##FCN, mx_inline_x##FCN, #FCN); \
}
#define MINMAX_FCNS(T, S) \
SND_MINMAX_FCN (min, <, T, S) \
NDS_MINMAX_FCN (min, <, T, S) \
NDND_MINMAX_FCN (min, <, T, S) \
SND_MINMAX_FCN (max, >, T, S) \
NDS_MINMAX_FCN (max, >, T, S) \
NDND_MINMAX_FCN (max, >, T, S)
// permutation matrix by matrix ops and vice versa
#define PMM_MULTIPLY_OP(PM, M) \
M operator * (const PM& p, const M& x) \
{ \
octave_idx_type nr = x.rows (); \
octave_idx_type nc = x.columns (); \
M result; \
if (p.columns () != nr) \
gripe_nonconformant ("operator *", p.rows (), p.columns (), nr, nc); \
else \
{ \
result = M (nr, nc); \
result.assign (p.col_perm_vec (), idx_vector::colon, x); \
} \
\
return result; \
}
#define MPM_MULTIPLY_OP(M, PM) \
M operator * (const M& x, const PM& p) \
{ \
octave_idx_type nr = x.rows (); \
octave_idx_type nc = x.columns (); \
M result; \
if (p.rows () != nc) \
gripe_nonconformant ("operator *", nr, nc, p.rows (), p.columns ()); \
else \
result = x.index (idx_vector::colon, p.col_perm_vec ()); \
\
return result; \
}
#define PMM_BIN_OPS(R, PM, M) \
PMM_MULTIPLY_OP(PM, M);
#define MPM_BIN_OPS(R, M, PM) \
MPM_MULTIPLY_OP(M, PM);
#define NDND_MAPPER_BODY(R, NAME) \
R retval (dims ()); \
octave_idx_type n = numel (); \
for (octave_idx_type i = 0; i < n; i++) \
retval.xelem (i) = NAME (elem (i)); \
return retval;
#endif