/* Copyright (C) 1996-2015 John W. Eaton Copyright (C) 2008-2009 Jaroslav Hajek Copyright (C) 2009-2010 VZLU Prague, a.s. This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see . */ #if !defined (octave_mx_op_defs_h) #define octave_mx_op_defs_h 1 #include "lo-array-gripes.h" #include "mx-op-decl.h" #include "mx-inlines.cc" #define SNANCHK(s) \ if (xisnan (s)) \ gripe_nan_to_logical_conversion () #define MNANCHK(m, MT) \ if (do_mx_check (m, mx_inline_any_nan)) \ gripe_nan_to_logical_conversion () // vector by scalar operations. #define VS_BIN_OP(R, F, OP, V, S) \ R \ F (const V& v, const S& s) \ { \ return do_ms_binary_op (v, s, OP); \ } #define VS_BIN_OPS(R, V, S) \ VS_BIN_OP (R, operator +, mx_inline_add, V, S) \ VS_BIN_OP (R, operator -, mx_inline_sub, V, S) \ VS_BIN_OP (R, operator *, mx_inline_mul, V, S) \ VS_BIN_OP (R, operator /, mx_inline_div, V, S) // scalar by vector by operations. #define SV_BIN_OP(R, F, OP, S, V) \ R \ F (const S& s, const V& v) \ { \ return do_sm_binary_op (s, v, OP); \ } #define SV_BIN_OPS(R, S, V) \ SV_BIN_OP (R, operator +, mx_inline_add, S, V) \ SV_BIN_OP (R, operator -, mx_inline_sub, S, V) \ SV_BIN_OP (R, operator *, mx_inline_mul, S, V) \ SV_BIN_OP (R, operator /, mx_inline_div, S, V) // vector by vector operations. #define VV_BIN_OP(R, F, OP, V1, V2) \ R \ F (const V1& v1, const V2& v2) \ { \ return do_mm_binary_op (v1, v2, OP, OP, OP, #F); \ } #define VV_BIN_OPS(R, V1, V2) \ VV_BIN_OP (R, operator +, mx_inline_add, V1, V2) \ VV_BIN_OP (R, operator -, mx_inline_sub, V1, V2) \ VV_BIN_OP (R, product, mx_inline_mul, V1, V2) \ VV_BIN_OP (R, quotient, mx_inline_div, V1, V2) // matrix by scalar operations. #define MS_BIN_OP(R, OP, M, S, F) \ R \ OP (const M& m, const S& s) \ { \ return do_ms_binary_op (m, s, F); \ } #define MS_BIN_OPS(R, M, S) \ MS_BIN_OP (R, operator +, M, S, mx_inline_add) \ MS_BIN_OP (R, operator -, M, S, mx_inline_sub) \ MS_BIN_OP (R, operator *, M, S, mx_inline_mul) \ MS_BIN_OP (R, operator /, M, S, mx_inline_div) #define MS_CMP_OP(F, OP, M, S) \ boolMatrix \ F (const M& m, const S& s) \ { \ return do_ms_binary_op (m, s, OP); \ } #define MS_CMP_OPS(M, S) \ MS_CMP_OP (mx_el_lt, mx_inline_lt, M, S) \ MS_CMP_OP (mx_el_le, mx_inline_le, M, S) \ MS_CMP_OP (mx_el_ge, mx_inline_ge, M, S) \ MS_CMP_OP (mx_el_gt, mx_inline_gt, M, S) \ MS_CMP_OP (mx_el_eq, mx_inline_eq, M, S) \ MS_CMP_OP (mx_el_ne, mx_inline_ne, M, S) #define MS_BOOL_OP(F, OP, M, S) \ boolMatrix \ F (const M& m, const S& s) \ { \ MNANCHK (m, M::element_type); \ SNANCHK (s); \ return do_ms_binary_op (m, s, OP); \ } #define MS_BOOL_OPS(M, S) \ MS_BOOL_OP (mx_el_and, mx_inline_and, M, S) \ MS_BOOL_OP (mx_el_or, mx_inline_or, M, S) // scalar by matrix operations. #define SM_BIN_OP(R, OP, S, M, F) \ R \ OP (const S& s, const M& m) \ { \ return do_sm_binary_op (s, m, F); \ } #define SM_BIN_OPS(R, S, M) \ SM_BIN_OP (R, operator +, S, M, mx_inline_add) \ SM_BIN_OP (R, operator -, S, M, mx_inline_sub) \ SM_BIN_OP (R, operator *, S, M, mx_inline_mul) \ SM_BIN_OP (R, operator /, S, M, mx_inline_div) #define SM_CMP_OP(F, OP, S, M) \ boolMatrix \ F (const S& s, const M& m) \ { \ return do_sm_binary_op (s, m, OP); \ } #define SM_CMP_OPS(S, M) \ SM_CMP_OP (mx_el_lt, mx_inline_lt, S, M) \ SM_CMP_OP (mx_el_le, mx_inline_le, S, M) \ SM_CMP_OP (mx_el_ge, mx_inline_ge, S, M) \ SM_CMP_OP (mx_el_gt, mx_inline_gt, S, M) \ SM_CMP_OP (mx_el_eq, mx_inline_eq, S, M) \ SM_CMP_OP (mx_el_ne, mx_inline_ne, S, M) #define SM_BOOL_OP(F, OP, S, M) \ boolMatrix \ F (const S& s, const M& m) \ { \ SNANCHK (s); \ MNANCHK (m, M::element_type); \ return do_sm_binary_op (s, m, OP); \ } #define SM_BOOL_OPS(S, M) \ SM_BOOL_OP (mx_el_and, mx_inline_and, S, M) \ SM_BOOL_OP (mx_el_or, mx_inline_or, S, M) // matrix by matrix operations. #define MM_BIN_OP(R, OP, M1, M2, F) \ R \ OP (const M1& m1, const M2& m2) \ { \ return do_mm_binary_op (m1, m2, F, F, F, #OP); \ } #define MM_BIN_OPS(R, M1, M2) \ MM_BIN_OP (R, operator +, M1, M2, mx_inline_add) \ MM_BIN_OP (R, operator -, M1, M2, mx_inline_sub) \ MM_BIN_OP (R, product, M1, M2, mx_inline_mul) \ MM_BIN_OP (R, quotient, M1, M2, mx_inline_div) #define MM_CMP_OP(F, OP, M1, M2) \ boolMatrix \ F (const M1& m1, const M2& m2) \ { \ return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \ } #define MM_CMP_OPS(M1, M2) \ MM_CMP_OP (mx_el_lt, mx_inline_lt, M1, M2) \ MM_CMP_OP (mx_el_le, mx_inline_le, M1, M2) \ MM_CMP_OP (mx_el_ge, mx_inline_ge, M1, M2) \ MM_CMP_OP (mx_el_gt, mx_inline_gt, M1, M2) \ MM_CMP_OP (mx_el_eq, mx_inline_eq, M1, M2) \ MM_CMP_OP (mx_el_ne, mx_inline_ne, M1, M2) #define MM_BOOL_OP(F, OP, M1, M2) \ boolMatrix \ F (const M1& m1, const M2& m2) \ { \ MNANCHK (m1, M1::element_type); \ MNANCHK (m2, M2::element_type); \ return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \ } #define MM_BOOL_OPS(M1, M2) \ MM_BOOL_OP (mx_el_and, mx_inline_and, M1, M2) \ MM_BOOL_OP (mx_el_or, mx_inline_or, M1, M2) // N-d matrix by scalar operations. #define NDS_BIN_OP(R, OP, ND, S, F) \ R \ OP (const ND& m, const S& s) \ { \ return do_ms_binary_op (m, s, F); \ } #define NDS_BIN_OPS(R, ND, S) \ NDS_BIN_OP (R, operator +, ND, S, mx_inline_add) \ NDS_BIN_OP (R, operator -, ND, S, mx_inline_sub) \ NDS_BIN_OP (R, operator *, ND, S, mx_inline_mul) \ NDS_BIN_OP (R, operator /, ND, S, mx_inline_div) #define NDS_CMP_OP(F, OP, ND, S) \ boolNDArray \ F (const ND& m, const S& s) \ { \ return do_ms_binary_op (m, s, OP); \ } #define NDS_CMP_OPS(ND, S) \ NDS_CMP_OP (mx_el_lt, mx_inline_lt, ND, S) \ NDS_CMP_OP (mx_el_le, mx_inline_le, ND, S) \ NDS_CMP_OP (mx_el_ge, mx_inline_ge, ND, S) \ NDS_CMP_OP (mx_el_gt, mx_inline_gt, ND, S) \ NDS_CMP_OP (mx_el_eq, mx_inline_eq, ND, S) \ NDS_CMP_OP (mx_el_ne, mx_inline_ne, ND, S) #define NDS_BOOL_OP(F, OP, ND, S) \ boolNDArray \ F (const ND& m, const S& s) \ { \ MNANCHK (m, ND::element_type); \ SNANCHK (s); \ return do_ms_binary_op (m, s, OP); \ } #define NDS_BOOL_OPS(ND, S) \ NDS_BOOL_OP (mx_el_and, mx_inline_and, ND, S) \ NDS_BOOL_OP (mx_el_or, mx_inline_or, ND, S) \ NDS_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND, S) \ NDS_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND, S) \ NDS_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND, S) \ NDS_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND, S) // scalar by N-d matrix operations. #define SND_BIN_OP(R, OP, S, ND, F) \ R \ OP (const S& s, const ND& m) \ { \ return do_sm_binary_op (s, m, F); \ } #define SND_BIN_OPS(R, S, ND) \ SND_BIN_OP (R, operator +, S, ND, mx_inline_add) \ SND_BIN_OP (R, operator -, S, ND, mx_inline_sub) \ SND_BIN_OP (R, operator *, S, ND, mx_inline_mul) \ SND_BIN_OP (R, operator /, S, ND, mx_inline_div) #define SND_CMP_OP(F, OP, S, ND) \ boolNDArray \ F (const S& s, const ND& m) \ { \ return do_sm_binary_op (s, m, OP); \ } #define SND_CMP_OPS(S, ND) \ SND_CMP_OP (mx_el_lt, mx_inline_lt, S, ND) \ SND_CMP_OP (mx_el_le, mx_inline_le, S, ND) \ SND_CMP_OP (mx_el_ge, mx_inline_ge, S, ND) \ SND_CMP_OP (mx_el_gt, mx_inline_gt, S, ND) \ SND_CMP_OP (mx_el_eq, mx_inline_eq, S, ND) \ SND_CMP_OP (mx_el_ne, mx_inline_ne, S, ND) #define SND_BOOL_OP(F, OP, S, ND) \ boolNDArray \ F (const S& s, const ND& m) \ { \ SNANCHK (s); \ MNANCHK (m, ND::element_type); \ return do_sm_binary_op (s, m, OP); \ } #define SND_BOOL_OPS(S, ND) \ SND_BOOL_OP (mx_el_and, mx_inline_and, S, ND) \ SND_BOOL_OP (mx_el_or, mx_inline_or, S, ND) \ SND_BOOL_OP (mx_el_not_and, mx_inline_not_and, S, ND) \ SND_BOOL_OP (mx_el_not_or, mx_inline_not_or, S, ND) \ SND_BOOL_OP (mx_el_and_not, mx_inline_and_not, S, ND) \ SND_BOOL_OP (mx_el_or_not, mx_inline_or_not, S, ND) // N-d matrix by N-d matrix operations. #define NDND_BIN_OP(R, OP, ND1, ND2, F) \ R \ OP (const ND1& m1, const ND2& m2) \ { \ return do_mm_binary_op (m1, m2, F, F, F, #OP); \ } #define NDND_BIN_OPS(R, ND1, ND2) \ NDND_BIN_OP (R, operator +, ND1, ND2, mx_inline_add) \ NDND_BIN_OP (R, operator -, ND1, ND2, mx_inline_sub) \ NDND_BIN_OP (R, product, ND1, ND2, mx_inline_mul) \ NDND_BIN_OP (R, quotient, ND1, ND2, mx_inline_div) #define NDND_CMP_OP(F, OP, ND1, ND2) \ boolNDArray \ F (const ND1& m1, const ND2& m2) \ { \ return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \ } #define NDND_CMP_OPS(ND1, ND2) \ NDND_CMP_OP (mx_el_lt, mx_inline_lt, ND1, ND2) \ NDND_CMP_OP (mx_el_le, mx_inline_le, ND1, ND2) \ NDND_CMP_OP (mx_el_ge, mx_inline_ge, ND1, ND2) \ NDND_CMP_OP (mx_el_gt, mx_inline_gt, ND1, ND2) \ NDND_CMP_OP (mx_el_eq, mx_inline_eq, ND1, ND2) \ NDND_CMP_OP (mx_el_ne, mx_inline_ne, ND1, ND2) #define NDND_BOOL_OP(F, OP, ND1, ND2) \ boolNDArray \ F (const ND1& m1, const ND2& m2) \ { \ MNANCHK (m1, ND1::element_type); \ MNANCHK (m2, ND2::element_type); \ return do_mm_binary_op (m1, m2, OP, OP, OP, #F); \ } #define NDND_BOOL_OPS(ND1, ND2) \ NDND_BOOL_OP (mx_el_and, mx_inline_and, ND1, ND2) \ NDND_BOOL_OP (mx_el_or, mx_inline_or, ND1, ND2) \ NDND_BOOL_OP (mx_el_not_and, mx_inline_not_and, ND1, ND2) \ NDND_BOOL_OP (mx_el_not_or, mx_inline_not_or, ND1, ND2) \ NDND_BOOL_OP (mx_el_and_not, mx_inline_and_not, ND1, ND2) \ NDND_BOOL_OP (mx_el_or_not, mx_inline_or_not, ND1, ND2) // scalar by diagonal matrix operations. #define SDM_BIN_OP(R, OP, S, DM) \ R \ operator OP (const S& s, const DM& dm) \ { \ R r (dm.rows (), dm.cols ()); \ \ for (octave_idx_type i = 0; i < dm.length (); i++) \ r.dgxelem (i) = s OP dm.dgelem (i); \ \ return r; \ } #define SDM_BIN_OPS(R, S, DM) \ SDM_BIN_OP (R, *, S, DM) // diagonal matrix by scalar operations. #define DMS_BIN_OP(R, OP, DM, S) \ R \ operator OP (const DM& dm, const S& s) \ { \ R r (dm.rows (), dm.cols ()); \ \ for (octave_idx_type i = 0; i < dm.length (); i++) \ r.dgxelem (i) = dm.dgelem (i) OP s; \ \ return r; \ } #define DMS_BIN_OPS(R, DM, S) \ DMS_BIN_OP (R, *, DM, S) \ DMS_BIN_OP (R, /, DM, S) // matrix by diagonal matrix operations. #define MDM_BIN_OP(R, OP, M, DM, OPEQ) \ R \ OP (const M& m, const DM& dm) \ { \ R r; \ \ octave_idx_type m_nr = m.rows (); \ octave_idx_type m_nc = m.cols (); \ \ octave_idx_type dm_nr = dm.rows (); \ octave_idx_type dm_nc = dm.cols (); \ \ if (m_nr != dm_nr || m_nc != dm_nc) \ gripe_nonconformant (#OP, m_nr, m_nc, dm_nr, dm_nc); \ else \ { \ r.resize (m_nr, m_nc); \ \ if (m_nr > 0 && m_nc > 0) \ { \ r = R (m); \ \ octave_idx_type len = dm.length (); \ \ for (octave_idx_type i = 0; i < len; i++) \ r.elem (i, i) OPEQ dm.elem (i, i); \ } \ } \ \ return r; \ } #define MDM_MULTIPLY_OP(R, M, DM, R_ZERO) \ R \ operator * (const M& m, const DM& dm) \ { \ R r; \ \ octave_idx_type m_nr = m.rows (); \ octave_idx_type m_nc = m.cols (); \ \ octave_idx_type dm_nr = dm.rows (); \ octave_idx_type dm_nc = dm.cols (); \ \ if (m_nc != dm_nr) \ gripe_nonconformant ("operator *", m_nr, m_nc, dm_nr, dm_nc); \ else \ { \ r = R (m_nr, dm_nc); \ R::element_type *rd = r.fortran_vec (); \ const M::element_type *md = m.data (); \ const DM::element_type *dd = dm.data (); \ \ octave_idx_type len = dm.length (); \ for (octave_idx_type i = 0; i < len; i++) \ { \ mx_inline_mul (m_nr, rd, md, dd[i]); \ rd += m_nr; md += m_nr; \ } \ mx_inline_fill (m_nr * (dm_nc - len), rd, R_ZERO); \ } \ \ return r; \ } #define MDM_BIN_OPS(R, M, DM, R_ZERO) \ MDM_BIN_OP (R, operator +, M, DM, +=) \ MDM_BIN_OP (R, operator -, M, DM, -=) \ MDM_MULTIPLY_OP (R, M, DM, R_ZERO) // diagonal matrix by matrix operations. #define DMM_BIN_OP(R, OP, DM, M, OPEQ, PREOP) \ R \ OP (const DM& dm, const M& m) \ { \ R r; \ \ octave_idx_type dm_nr = dm.rows (); \ octave_idx_type dm_nc = dm.cols (); \ \ octave_idx_type m_nr = m.rows (); \ octave_idx_type m_nc = m.cols (); \ \ if (dm_nr != m_nr || dm_nc != m_nc) \ gripe_nonconformant (#OP, dm_nr, dm_nc, m_nr, m_nc); \ else \ { \ if (m_nr > 0 && m_nc > 0) \ { \ r = R (PREOP m); \ \ octave_idx_type len = dm.length (); \ \ for (octave_idx_type i = 0; i < len; i++) \ r.elem (i, i) OPEQ dm.elem (i, i); \ } \ else \ r.resize (m_nr, m_nc); \ } \ \ return r; \ } #define DMM_MULTIPLY_OP(R, DM, M, R_ZERO) \ R \ operator * (const DM& dm, const M& m) \ { \ R r; \ \ octave_idx_type dm_nr = dm.rows (); \ octave_idx_type dm_nc = dm.cols (); \ \ octave_idx_type m_nr = m.rows (); \ octave_idx_type m_nc = m.cols (); \ \ if (dm_nc != m_nr) \ gripe_nonconformant ("operator *", dm_nr, dm_nc, m_nr, m_nc); \ else \ { \ r = R (dm_nr, m_nc); \ R::element_type *rd = r.fortran_vec (); \ const M::element_type *md = m.data (); \ const DM::element_type *dd = dm.data (); \ \ octave_idx_type len = dm.length (); \ for (octave_idx_type i = 0; i < m_nc; i++) \ { \ mx_inline_mul (len, rd, md, dd); \ rd += len; md += m_nr; \ mx_inline_fill (dm_nr - len, rd, R_ZERO); \ rd += dm_nr - len; \ } \ } \ \ return r; \ } #define DMM_BIN_OPS(R, DM, M, R_ZERO) \ DMM_BIN_OP (R, operator +, DM, M, +=, ) \ DMM_BIN_OP (R, operator -, DM, M, +=, -) \ DMM_MULTIPLY_OP (R, DM, M, R_ZERO) // diagonal matrix by diagonal matrix operations. #define DMDM_BIN_OP(R, OP, DM1, DM2, F) \ R \ OP (const DM1& dm1, const DM2& dm2) \ { \ R r; \ \ octave_idx_type dm1_nr = dm1.rows (); \ octave_idx_type dm1_nc = dm1.cols (); \ \ octave_idx_type dm2_nr = dm2.rows (); \ octave_idx_type dm2_nc = dm2.cols (); \ \ if (dm1_nr != dm2_nr || dm1_nc != dm2_nc) \ gripe_nonconformant (#OP, dm1_nr, dm1_nc, dm2_nr, dm2_nc); \ else \ { \ r.resize (dm1_nr, dm1_nc); \ \ if (dm1_nr > 0 && dm1_nc > 0) \ F (dm1.length (), r.fortran_vec (), dm1.data (), dm2.data ()); \ } \ \ return r; \ } #define DMDM_BIN_OPS(R, DM1, DM2) \ DMDM_BIN_OP (R, operator +, DM1, DM2, mx_inline_add) \ DMDM_BIN_OP (R, operator -, DM1, DM2, mx_inline_sub) \ DMDM_BIN_OP (R, product, DM1, DM2, mx_inline_mul) // scalar by N-d array min/max ops #define SND_MINMAX_FCN(FCN, OP, T, S) \ T \ FCN (S d, const T& m) \ { \ return do_sm_binary_op (d, m, mx_inline_x##FCN); \ } #define NDS_MINMAX_FCN(FCN, OP, T, S) \ T \ FCN (const T& m, S d) \ { \ return do_ms_binary_op (m, d, mx_inline_x##FCN); \ } #define NDND_MINMAX_FCN(FCN, OP, T, S) \ T \ FCN (const T& a, const T& b) \ { \ return do_mm_binary_op (a, b, mx_inline_x##FCN, mx_inline_x##FCN, mx_inline_x##FCN, #FCN); \ } #define MINMAX_FCNS(T, S) \ SND_MINMAX_FCN (min, <, T, S) \ NDS_MINMAX_FCN (min, <, T, S) \ NDND_MINMAX_FCN (min, <, T, S) \ SND_MINMAX_FCN (max, >, T, S) \ NDS_MINMAX_FCN (max, >, T, S) \ NDND_MINMAX_FCN (max, >, T, S) // permutation matrix by matrix ops and vice versa #define PMM_MULTIPLY_OP(PM, M) \ M operator * (const PM& p, const M& x) \ { \ octave_idx_type nr = x.rows (); \ octave_idx_type nc = x.columns (); \ M result; \ if (p.columns () != nr) \ gripe_nonconformant ("operator *", p.rows (), p.columns (), nr, nc); \ else \ { \ result = M (nr, nc); \ result.assign (p.col_perm_vec (), idx_vector::colon, x); \ } \ \ return result; \ } #define MPM_MULTIPLY_OP(M, PM) \ M operator * (const M& x, const PM& p) \ { \ octave_idx_type nr = x.rows (); \ octave_idx_type nc = x.columns (); \ M result; \ if (p.rows () != nc) \ gripe_nonconformant ("operator *", nr, nc, p.rows (), p.columns ()); \ else \ result = x.index (idx_vector::colon, p.col_perm_vec ()); \ \ return result; \ } #define PMM_BIN_OPS(R, PM, M) \ PMM_MULTIPLY_OP(PM, M); #define MPM_BIN_OPS(R, M, PM) \ MPM_MULTIPLY_OP(M, PM); #define NDND_MAPPER_BODY(R, NAME) \ R retval (dims ()); \ octave_idx_type n = numel (); \ for (octave_idx_type i = 0; i < n; i++) \ retval.xelem (i) = NAME (elem (i)); \ return retval; #endif