/* Copyright (C) 2004-2015 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see . */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "lo-ieee.h" #include "lo-utils.h" #include "mx-base.h" #include "quit.h" #include "oct-locbuf.h" #include "defun.h" #include "gripes.h" #include "oct-obj.h" #include "oct-lvalue.h" #include "oct-hdf5.h" #include "oct-stream.h" #include "ops.h" #include "ov-base.h" #include "ov-base-mat.h" #include "ov-base-mat.cc" #include "ov-base-scalar.h" #include "ov-base-scalar.cc" #include "ov-base-int.h" #include "ov-int-traits.h" #include "pr-output.h" #include "variables.h" #include "byte-swap.h" #include "ls-oct-ascii.h" #include "ls-utils.h" #include "ls-hdf5.h" // We have all the machinery below (octave_base_int_helper and // octave_base_int_helper_traits) to avoid a few warnings from GCC // about comparisons always false due to limited range of data types. // Ugh. The cure may be worse than the disease. template struct octave_base_int_helper { static bool char_value_out_of_range (T val) { return val < 0 || val > std::numeric_limits::max (); } }; template struct octave_base_int_helper { static bool char_value_out_of_range (T) { return false; } }; template struct octave_base_int_helper { static bool char_value_out_of_range (T val) { return val > std::numeric_limits::max (); } }; template struct octave_base_int_helper { static bool char_value_out_of_range (T val) { return val < 0; } }; // For all types other than char, signed char, and unsigned char, we // assume that the upper limit for the range of allowable values is // larger than the range for unsigned char. If that's not true, we // are still OK, but will see the warnings again for any other types // that do not meet this assumption. template struct octave_base_int_helper_traits { static const bool can_be_larger_than_uchar_max = true; }; template <> struct octave_base_int_helper_traits { static const bool can_be_larger_than_uchar_max = false; }; template <> struct octave_base_int_helper_traits { static const bool can_be_larger_than_uchar_max = false; }; template <> struct octave_base_int_helper_traits { static const bool can_be_larger_than_uchar_max = false; }; template octave_base_value * octave_base_int_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (this->matrix.nelem () == 1) retval = new typename octave_value_int_traits::scalar_type (this->matrix (0)); return retval; } template octave_value octave_base_int_matrix::convert_to_str_internal (bool, bool, char type) const { octave_value retval; dim_vector dv = this->dims (); octave_idx_type nel = dv.numel (); charNDArray chm (dv); bool warned = false; for (octave_idx_type i = 0; i < nel; i++) { octave_quit (); typename T::element_type tmp = this->matrix(i); typedef typename T::element_type::val_type val_type; val_type ival = tmp.value (); static const bool is_signed = std::numeric_limits::is_signed; static const bool can_be_larger_than_uchar_max = octave_base_int_helper_traits::can_be_larger_than_uchar_max; if (octave_base_int_helper::char_value_out_of_range (ival)) { // FIXME: is there something better we could do? ival = 0; if (! warned) { ::warning ("range error for conversion to character value"); warned = true; } } else chm (i) = static_cast (ival); } retval = octave_value (chm, type); return retval; } template bool octave_base_int_matrix::save_ascii (std::ostream& os) { dim_vector d = this->dims (); os << "# ndims: " << d.length () << "\n"; for (int i = 0; i < d.length (); i++) os << " " << d (i); os << "\n" << this->matrix; return true; } template bool octave_base_int_matrix::load_ascii (std::istream& is) { int mdims = 0; bool success = true; if (extract_keyword (is, "ndims", mdims, true)) { if (mdims >= 0) { dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) is >> dv(i); T tmp(dv); is >> tmp; if (!is) { error ("load: failed to load matrix constant"); success = false; } this->matrix = tmp; } else { error ("load: failed to extract number of rows and columns"); success = false; } } else error ("load: failed to extract number of dimensions"); return success; } template bool octave_base_int_matrix::save_binary (std::ostream& os, bool&) { dim_vector d = this->dims (); if (d.length () < 1) return false; // Use negative value for ndims to differentiate with old format!! int32_t tmp = - d.length (); os.write (reinterpret_cast (&tmp), 4); for (int i=0; i < d.length (); i++) { tmp = d(i); os.write (reinterpret_cast (&tmp), 4); } os.write (reinterpret_cast (this->matrix.data ()), this->byte_size ()); return true; } template bool octave_base_int_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format) { int32_t mdims; if (! is.read (reinterpret_cast (&mdims), 4)) return false; if (swap) swap_bytes<4> (&mdims); if (mdims >= 0) return false; mdims = - mdims; int32_t di; dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) { if (! is.read (reinterpret_cast (&di), 4)) return false; if (swap) swap_bytes<4> (&di); dv(i) = di; } // Convert an array with a single dimension to be a row vector. // Octave should never write files like this, other software // might. if (mdims == 1) { mdims = 2; dv.resize (mdims); dv(1) = dv(0); dv(0) = 1; } T m (dv); if (! is.read (reinterpret_cast (m.fortran_vec ()), m.byte_size ())) return false; if (swap) { int nel = dv.numel (); int bytes = nel / m.byte_size (); for (int i = 0; i < nel; i++) switch (bytes) { case 8: swap_bytes<8> (&m(i)); break; case 4: swap_bytes<4> (&m(i)); break; case 2: swap_bytes<2> (&m(i)); break; case 1: default: break; } } this->matrix = m; return true; } template bool octave_base_int_matrix::save_hdf5 (octave_hdf5_id loc_id, const char *name, bool) { bool retval = false; #if defined (HAVE_HDF5) hid_t save_type_hid = HDF5_SAVE_TYPE; dim_vector dv = this->dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); int rank = dv.length (); hid_t space_hid, data_hid; space_hid = data_hid = -1; OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); // Octave uses column-major, while HDF5 uses row-major ordering for (int i = 0; i < rank; i++) hdims[i] = dv (rank-i-1); space_hid = H5Screate_simple (rank, hdims, 0); if (space_hid < 0) return false; #if HAVE_HDF5_18 data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); return false; } retval = H5Dwrite (data_hid, save_type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, this->matrix.data ()) >= 0; H5Dclose (data_hid); H5Sclose (space_hid); #else this->gripe_save ("hdf5"); #endif return retval; } template bool octave_base_int_matrix::load_hdf5 (octave_hdf5_id loc_id, const char *name) { bool retval = false; #if defined (HAVE_HDF5) hid_t save_type_hid = HDF5_SAVE_TYPE; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) this->matrix.resize (dv); if (empty) return (empty > 0); #if HAVE_HDF5_18 hid_t data_hid = H5Dopen (loc_id, name, H5P_DEFAULT); #else hid_t data_hid = H5Dopen (loc_id, name); #endif hid_t space_id = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_id); if (rank < 1) { H5Sclose (space_id); H5Dclose (data_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_id, hdims, maxdims); // Octave uses column-major, while HDF5 uses row-major ordering if (rank == 1) { dv.resize (2); dv(0) = 1; dv(1) = hdims[0]; } else { dv.resize (rank); for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--) dv(j) = hdims[i]; } T m (dv); if (H5Dread (data_hid, save_type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, m.fortran_vec ()) >= 0) { retval = true; this->matrix = m; } H5Sclose (space_id); H5Dclose (data_hid); #else this->gripe_load ("hdf5"); #endif return retval; } template void octave_base_int_matrix::print_raw (std::ostream& os, bool pr_as_read_syntax) const { octave_print_internal (os, this->matrix, pr_as_read_syntax, this->current_print_indent_level ()); } template octave_value octave_base_int_scalar::convert_to_str_internal (bool, bool, char type) const { octave_value retval; T tmp = this->scalar; typedef typename T::val_type val_type; val_type ival = tmp.value (); static const bool is_signed = std::numeric_limits::is_signed; static const bool can_be_larger_than_uchar_max = octave_base_int_helper_traits::can_be_larger_than_uchar_max; if (octave_base_int_helper::char_value_out_of_range (ival)) { // FIXME: is there something better we could do? ival = 0; ::warning ("range error for conversion to character value"); } else retval = octave_value (std::string (1, static_cast (ival)), type); return retval; } template bool octave_base_int_scalar::save_ascii (std::ostream& os) { os << this->scalar << "\n"; return true; } template bool octave_base_int_scalar::load_ascii (std::istream& is) { is >> this->scalar; if (!is) { error ("load: failed to load scalar constant"); return false; } return true; } template bool octave_base_int_scalar::save_binary (std::ostream& os, bool&) { os.write (reinterpret_cast (&(this->scalar)), this->byte_size ()); return true; } template bool octave_base_int_scalar::load_binary (std::istream& is, bool swap, oct_mach_info::float_format) { T tmp; if (! is.read (reinterpret_cast (&tmp), this->byte_size ())) return false; if (swap) switch (this->byte_size ()) { case 8: swap_bytes<8> (&tmp); break; case 4: swap_bytes<4> (&tmp); break; case 2: swap_bytes<2> (&tmp); break; case 1: default: break; } this->scalar = tmp; return true; } template bool octave_base_int_scalar::save_hdf5 (octave_hdf5_id loc_id, const char *name, bool) { bool retval = false; #if defined (HAVE_HDF5) hid_t save_type_hid = HDF5_SAVE_TYPE; hsize_t dimens[3]; hid_t space_hid, data_hid; space_hid = data_hid = -1; space_hid = H5Screate_simple (0, dimens, 0); if (space_hid < 0) return false; #if HAVE_HDF5_18 data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); return false; } retval = H5Dwrite (data_hid, save_type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, &(this->scalar)) >= 0; H5Dclose (data_hid); H5Sclose (space_hid); #else this->gripe_save ("hdf5"); #endif return retval; } template bool octave_base_int_scalar::load_hdf5 (octave_hdf5_id loc_id, const char *name) { #if defined (HAVE_HDF5) hid_t save_type_hid = HDF5_SAVE_TYPE; #if HAVE_HDF5_18 hid_t data_hid = H5Dopen (loc_id, name, H5P_DEFAULT); #else hid_t data_hid = H5Dopen (loc_id, name); #endif hid_t space_id = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_id); if (rank != 0) { H5Dclose (data_hid); return false; } T tmp; if (H5Dread (data_hid, save_type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) < 0) { H5Dclose (data_hid); return false; } this->scalar = tmp; H5Dclose (data_hid); return true; #else this->gripe_load ("hdf5"); return false; #endif }