/*
Copyright (C) 2004-2015 John W. Eaton
Copyright (C) 2010 VZLU Prague
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
.
*/
#include
#include
#include
#include "mx-base.h"
#include "str-vec.h"
#include "error.h"
#include "mxarray.h"
#include "oct-stream.h"
#include "ov-base.h"
#include "ov-base-int.h"
#include "ov-typeinfo.h"
#include "gripes.h"
#include "ov-re-mat.h"
#include "ov-scalar.h"
class
OCTINTERP_API
OCTAVE_VALUE_INT_MATRIX_T
: public octave_base_int_matrix >
{
public:
OCTAVE_VALUE_INT_MATRIX_T (void)
: octave_base_int_matrix > () { }
OCTAVE_VALUE_INT_MATRIX_T (const intNDArray& nda)
: octave_base_int_matrix > (nda) { }
OCTAVE_VALUE_INT_MATRIX_T (const Array& nda)
: octave_base_int_matrix >
(intNDArray (nda)) { }
~OCTAVE_VALUE_INT_MATRIX_T (void) { }
octave_base_value *clone (void) const
{ return new OCTAVE_VALUE_INT_MATRIX_T (*this); }
octave_base_value *empty_clone (void) const
{ return new OCTAVE_VALUE_INT_MATRIX_T (); }
bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; }
bool is_integer_type (void) const { return true; }
builtin_type_t builtin_type (void) const { return OCTAVE_INT_BTYP; }
public:
int8NDArray
int8_array_value (void) const { return int8NDArray (matrix); }
int16NDArray
int16_array_value (void) const { return int16NDArray (matrix); }
int32NDArray
int32_array_value (void) const { return int32NDArray (matrix); }
int64NDArray
int64_array_value (void) const { return int64NDArray (matrix); }
uint8NDArray
uint8_array_value (void) const { return uint8NDArray (matrix); }
uint16NDArray
uint16_array_value (void) const { return uint16NDArray (matrix); }
uint32NDArray
uint32_array_value (void) const { return uint32NDArray (matrix); }
uint64NDArray
uint64_array_value (void) const { return uint64NDArray (matrix); }
double
double_value (bool = false) const
{
double retval = lo_ieee_nan_value ();
if (numel () > 0)
{
gripe_implicit_conversion ("Octave:array-to-scalar",
type_name (), "real scalar");
retval = matrix(0).double_value ();
}
else
gripe_invalid_conversion (type_name (), "real scalar");
return retval;
}
float
float_value (bool = false) const
{
float retval = lo_ieee_float_nan_value ();
if (numel () > 0)
{
gripe_implicit_conversion ("Octave:array-to-scalar",
type_name (), "real scalar");
retval = matrix(0).float_value ();
}
else
gripe_invalid_conversion (type_name (), "real scalar");
return retval;
}
double scalar_value (bool = false) const { return double_value (); }
float float_scalar_value (bool = false) const { return float_value (); }
Matrix
matrix_value (bool = false) const
{
Matrix retval;
dim_vector dv = dims ();
if (dv.length () > 2)
error ("invalid conversion of %s to Matrix", type_name ().c_str ());
else
{
retval = Matrix (dv(0), dv(1));
double *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = matrix(i).double_value ();
}
return retval;
}
FloatMatrix
float_matrix_value (bool = false) const
{
FloatMatrix retval;
dim_vector dv = dims ();
if (dv.length () > 2)
error ("invalid conversion of %s to FloatMatrix", type_name ().c_str ());
else
{
retval = FloatMatrix (dv(0), dv(1));
float *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = matrix(i).float_value ();
}
return retval;
}
ComplexMatrix
complex_matrix_value (bool = false) const
{
ComplexMatrix retval;
dim_vector dv = dims ();
if (dv.length () > 2)
error ("invalid conversion of %s to Matrix", type_name ().c_str ());
else
{
retval = ComplexMatrix (dv(0), dv(1));
Complex *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = Complex (matrix(i).double_value ());
}
return retval;
}
FloatComplexMatrix
float_complex_matrix_value (bool = false) const
{
FloatComplexMatrix retval;
dim_vector dv = dims ();
if (dv.length () > 2)
error ("invalid conversion of %s to FloatMatrix", type_name ().c_str ());
else
{
retval = FloatComplexMatrix (dv(0), dv(1));
FloatComplex *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = FloatComplex (matrix(i).float_value ());
}
return retval;
}
NDArray
array_value (bool = false) const
{
NDArray retval (matrix.dims ());
double *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = matrix(i).double_value ();
return retval;
}
FloatNDArray
float_array_value (bool = false) const
{
FloatNDArray retval (matrix.dims ());
float *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = matrix(i).float_value ();
return retval;
}
ComplexNDArray
complex_array_value (bool = false) const
{
ComplexNDArray retval (matrix.dims ());
Complex *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = Complex (matrix(i).double_value ());
return retval;
}
FloatComplexNDArray
float_complex_array_value (bool = false) const
{
FloatComplexNDArray retval (matrix.dims ());
FloatComplex *vec = retval.fortran_vec ();
octave_idx_type nel = matrix.numel ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = FloatComplex (matrix(i).float_value ());
return retval;
}
boolNDArray
bool_array_value (bool warn = false) const
{
boolNDArray retval (dims ());
octave_idx_type nel = numel ();
if (warn && matrix.any_element_not_one_or_zero ())
gripe_logical_conversion ();
bool *vec = retval.fortran_vec ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = matrix(i).bool_value ();
return retval;
}
charNDArray
char_array_value (bool = false) const
{
charNDArray retval (dims ());
octave_idx_type nel = numel ();
char *vec = retval.fortran_vec ();
for (octave_idx_type i = 0; i < nel; i++)
vec[i] = matrix(i).char_value ();
return retval;
}
// Use matrix_ref here to clear index cache.
void increment (void)
{
matrix_ref () += OCTAVE_INT_T (1);
}
void decrement (void)
{
matrix_ref () -= OCTAVE_INT_T (1);
}
void changesign (void)
{
matrix_ref ().changesign ();
}
idx_vector index_vector (bool /* require_integers */ = false) const
{
return idx_cache ? *idx_cache : set_idx_cache (idx_vector (matrix));
}
int write (octave_stream& os, int block_size,
oct_data_conv::data_type output_type, int skip,
oct_mach_info::float_format flt_fmt) const
{ return os.write (matrix, block_size, output_type, skip, flt_fmt); }
// Unsafe. This function exists to support the MEX interface.
// You should not use it anywhere else.
void *mex_get_data (void) const { return matrix.mex_get_data (); }
mxArray *as_mxArray (void) const
{
mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, dims (), mxREAL);
OCTAVE_INT_T::val_type *pr = static_cast
(retval->get_data ());
mwSize nel = numel ();
const OCTAVE_INT_T *p = matrix.data ();
for (mwIndex i = 0; i < nel; i++)
pr[i] = p[i].value ();
return retval;
}
octave_value map (unary_mapper_t umap) const
{
switch (umap)
{
case umap_abs:
return matrix.abs ();
case umap_signum:
return matrix.signum ();
case umap_ceil:
case umap_conj:
case umap_fix:
case umap_floor:
case umap_real:
case umap_round:
return matrix;
case umap_imag:
return intNDArray (matrix.dims (), OCTAVE_INT_T ());
case umap_isnan:
case umap_isna:
case umap_isinf:
return boolNDArray (matrix.dims (), false);
case umap_finite:
return boolNDArray (matrix.dims (), true);
// Special cases for Matlab compatibility.
case umap_xtolower:
case umap_xtoupper:
return matrix;
default:
{
// FIXME: we should be able to do better than converting to
// double here.
octave_matrix m (array_value ());
return m.map (umap);
}
}
}
private:
DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};
class
OCTINTERP_API
OCTAVE_VALUE_INT_SCALAR_T
: public octave_base_int_scalar
{
public:
OCTAVE_VALUE_INT_SCALAR_T (void)
: octave_base_int_scalar () { }
OCTAVE_VALUE_INT_SCALAR_T (const OCTAVE_INT_T& nda)
: octave_base_int_scalar (nda) { }
~OCTAVE_VALUE_INT_SCALAR_T (void) { }
octave_base_value *clone (void) const
{ return new OCTAVE_VALUE_INT_SCALAR_T (*this); }
octave_base_value *empty_clone (void) const
{ return new OCTAVE_VALUE_INT_MATRIX_T (); }
octave_value do_index_op (const octave_value_list& idx,
bool resize_ok = false)
{
// FIXME: this doesn't solve the problem of
//
// a = 1; a([1,1], [1,1], [1,1])
//
// and similar constructions. Hmm...
// FIXME: using this constructor avoids narrowing the
// 1x1 matrix back to a scalar value. Need a better solution
// to this problem.
octave_value tmp
(new OCTAVE_VALUE_INT_MATRIX_T
(OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION ()));
return tmp.do_index_op (idx, resize_ok);
}
bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; }
bool is_integer_type (void) const { return true; }
builtin_type_t builtin_type (void) const { return OCTAVE_INT_BTYP; }
public:
octave_int8
int8_scalar_value (void) const { return octave_int8 (scalar); }
octave_int16
int16_scalar_value (void) const { return octave_int16 (scalar); }
octave_int32
int32_scalar_value (void) const { return octave_int32 (scalar); }
octave_int64
int64_scalar_value (void) const { return octave_int64 (scalar); }
octave_uint8
uint8_scalar_value (void) const { return octave_uint8 (scalar); }
octave_uint16
uint16_scalar_value (void) const { return octave_uint16 (scalar); }
octave_uint32
uint32_scalar_value (void) const { return octave_uint32 (scalar); }
octave_uint64
uint64_scalar_value (void) const { return octave_uint64 (scalar); }
int8NDArray
int8_array_value (void) const
{ return int8NDArray (dim_vector (1, 1), int8_scalar_value ()); }
int16NDArray
int16_array_value (void) const
{ return int16NDArray (dim_vector (1, 1), int16_scalar_value ()); }
int32NDArray
int32_array_value (void) const
{ return int32NDArray (dim_vector (1, 1), int32_scalar_value ()); }
int64NDArray
int64_array_value (void) const
{ return int64NDArray (dim_vector (1, 1), int64_scalar_value ()); }
uint8NDArray
uint8_array_value (void) const
{ return uint8NDArray (dim_vector (1, 1), uint8_scalar_value ()); }
uint16NDArray
uint16_array_value (void) const
{ return uint16NDArray (dim_vector (1, 1), uint16_scalar_value ()); }
uint32NDArray
uint32_array_value (void) const
{ return uint32NDArray (dim_vector (1, 1), uint32_scalar_value ()); }
uint64NDArray
uint64_array_value (void) const
{ return uint64NDArray (dim_vector (1, 1), uint64_scalar_value ()); }
octave_value resize (const dim_vector& dv, bool fill = false) const
{
if (fill)
{
intNDArray retval (dv, 0);
if (dv.numel ())
retval(0) = scalar;
return retval;
}
else
{
intNDArray retval (dv);
if (dv.numel ())
retval(0) = scalar;
return retval;
}
}
double double_value (bool = false) const { return scalar.double_value (); }
float float_value (bool = false) const { return scalar.float_value (); }
double scalar_value (bool = false) const { return scalar.double_value (); }
float float_scalar_value (bool = false) const
{ return scalar.float_value (); }
Matrix
matrix_value (bool = false) const
{
Matrix retval (1, 1);
retval(0,0) = scalar.double_value ();
return retval;
}
FloatMatrix
float_matrix_value (bool = false) const
{
FloatMatrix retval (1, 1);
retval(0,0) = scalar.float_value ();
return retval;
}
ComplexMatrix
complex_matrix_value (bool = false) const
{
ComplexMatrix retval (1, 1);
retval(0,0) = Complex (scalar.double_value ());
return retval;
}
FloatComplexMatrix
float_complex_matrix_value (bool = false) const
{
FloatComplexMatrix retval (1, 1);
retval(0,0) = FloatComplex (scalar.float_value ());
return retval;
}
NDArray
array_value (bool = false) const
{
NDArray retval (dim_vector (1, 1));
retval(0) = scalar.double_value ();
return retval;
}
FloatNDArray
float_array_value (bool = false) const
{
FloatNDArray retval (dim_vector (1, 1));
retval(0) = scalar.float_value ();
return retval;
}
ComplexNDArray
complex_array_value (bool = false) const
{
ComplexNDArray retval (dim_vector (1, 1));
retval(0) = FloatComplex (scalar.double_value ());
return retval;
}
FloatComplexNDArray
float_complex_array_value (bool = false) const
{
FloatComplexNDArray retval (dim_vector (1, 1));
retval(0) = FloatComplex (scalar.float_value ());
return retval;
}
bool bool_value (bool warn = false) const
{
if (warn && scalar != 0.0 && scalar != 1.0)
gripe_logical_conversion ();
return scalar.bool_value ();
}
boolNDArray
bool_array_value (bool warn = false) const
{
boolNDArray retval (dim_vector (1, 1));
if (warn && scalar != 0.0 && scalar != 1.0)
gripe_logical_conversion ();
retval(0) = scalar.bool_value ();
return retval;
}
charNDArray
char_array_value (bool = false) const
{
charNDArray retval (dim_vector (1, 1));
retval(0) = scalar.char_value ();
return retval;
}
void increment (void)
{
scalar += OCTAVE_INT_T (1);
}
void decrement (void)
{
scalar -= OCTAVE_INT_T (1);
}
idx_vector index_vector (bool /* require_integers */ = false) const { return idx_vector (scalar); }
int write (octave_stream& os, int block_size,
oct_data_conv::data_type output_type, octave_idx_type skip,
oct_mach_info::float_format flt_fmt) const
{
return os.write (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION (),
block_size, output_type, skip, flt_fmt);
}
// Unsafe. This function exists to support the MEX interface.
// You should not use it anywhere else.
void *mex_get_data (void) const { return scalar.mex_get_data (); }
mxArray *as_mxArray (void) const
{
mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, 1, 1, mxREAL);
OCTAVE_INT_T::val_type *pr = static_cast
(retval->get_data ());
pr[0] = scalar.value ();
return retval;
}
octave_value map (unary_mapper_t umap) const
{
switch (umap)
{
case umap_abs:
return scalar.abs ();
case umap_signum:
return scalar.signum ();
case umap_ceil:
case umap_conj:
case umap_fix:
case umap_floor:
case umap_real:
case umap_round:
return scalar;
case umap_imag:
return OCTAVE_INT_T ();
case umap_isnan:
case umap_isna:
case umap_isinf:
return false;
case umap_finite:
return true;
// Special cases for Matlab compatibility.
case umap_xtolower:
case umap_xtoupper:
return scalar;
default:
{
octave_scalar m (scalar_value ());
return m.map (umap);
}
}
}
private:
DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};