#include "i3_model_tools.h" #include "i3_math.h" #ifdef __APPLE__ #ifdef USE_VECLIB #include #endif #endif #ifdef USE_MKL #include "mkl.h" #ifdef USE_VECLIB #error Cannot use both veclib and mkl. Choose one. #endif #endif #include "i3_mcmc.h" #include "gsl/gsl_sf_gamma.h" #define FABS(x) (((x)>=0.0)? (x) : -(x)) extern i3_flt i3_sersic_kappa(i3_flt n); void i3_add_real_space_gaussian(i3_image * image, i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0){ i3_flt m1; i3_flt m2; i3_flt m3; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); for(int j=0;jny;j++){ for(int i=0;inx;i++){ i3_flt x,y; i3_image_xy_from_ij(image, i, j, &x, &y); i3_flt dx = x-x0; i3_flt dy = y-y0; i3_flt r2 = (m1*dx*dx+2*m2*dx*dy+m3*dy*dy); image->row[j][i] += A*i3_exp(-r2/ab); } } } /* Every source I find for this profile gives a different functional form! */ void i3_add_real_space_king_profile(i3_image * image, i3_flt rt, i3_flt rc, i3_flt e1, i3_flt e2, i3_flt k, i3_flt x0, i3_flt y0){ i3_flt m1; i3_flt m2; i3_flt m3; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); i3_flt rc2 = rc*rc; i3_flt rc_m2 = 1.0/rc2; i3_flt ft = 1.0/i3_sqrt(1+rt*rt*rc_m2); i3_flt rt2 = rt*rt; for(int j=0;jny;j++){ for(int i=0;inx;i++){ i3_flt x,y; i3_image_xy_from_ij(image, i, j, &x, &y); i3_flt dx = x-x0; i3_flt dy = y-y0; i3_flt r2 = (m1*dx*dx+2*m2*dx*dy+m3*dy*dy); if (r2row[j][i] += k*(fc-ft); } } } } void i3_add_real_space_beta_profile(i3_flt rc, i3_flt e1, i3_flt e2, i3_flt A, i3_flt beta, i3_flt x0, i3_flt y0, i3_image * image){ i3_flt m1; i3_flt m2; i3_flt m3; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); i3_flt rc_m2 = 1.0/(rc*rc); i3_flt ind = -3*beta+0.5; for(int j=0;jny;j++){ for(int i=0;inx;i++){ i3_flt x,y; i3_image_xy_from_ij(image, i, j, &x, &y); i3_flt dx = x-x0; i3_flt dy = y-y0; i3_flt r2 = (m1*dx*dx+2*m2*dx*dy+m3*dy*dy); image->row[j][i] += A*pow(1+r2*rc_m2, ind); } } } void i3_add_real_space_sersic(i3_image * image, i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n){ i3_flt kappa = i3_sersic_kappa(sersic_n); i3_flt sers_exponent = 0.5 / sersic_n; i3_flt m1; i3_flt m2; i3_flt m3; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); for(int j=0;jny;j++){ for(int i=0;inx;i++){ i3_flt x,y; i3_image_xy_from_ij(image, i, j, &x, &y); i3_flt dx = x-x0; i3_flt dy = y-y0; i3_flt r2 = (m1*dx*dx+2*m2*dx*dy+m3*dy*dy); image->row[j][i] += A*i3_exp(-kappa*i3_pow(r2/ab, sers_exponent)); } } } void i3_add_fourier_space_sersic(i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n, i3_fourier * fourier_image){ i3_flt m1; i3_flt m2; i3_flt m3; i3_unit_shear_matrix_fourier(e1, e2, &m1, &m2, &m3); int nx = fourier_image->nx_real; int ny = fourier_image->ny_real; for(int j=0;jrow[j][i] += A; //lookup, do x0 y0 offsets e.g. e^k_x*x0; } } } void i3_add_real_space_sersic_truncated_radius(i3_image * image, i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n, i3_flt truncation_factor){ if (truncation_factor==0) { i3_add_real_space_sersic(image, ab, e1, e2, A, x0, y0, sersic_n); return; } i3_flt truncation2 = truncation_factor*truncation_factor; i3_flt kappa = i3_sersic_kappa(sersic_n); i3_flt sers_exponent = 0.5 / sersic_n; //SLB: !!! Currently this fails if sersic_n=0 (for some strange reason). Ideally would catch this somewhere //printf("\nkappa sersic_n sers_exponent:%f\t%f\t%f\n\n",kappa,sersic_n,sers_exponent); i3_flt m1; i3_flt m2; i3_flt m3; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); for(int j=0;jny;j++){ for(int i=0;inx;i++){ i3_flt x,y; i3_image_xy_from_ij(image, i, j, &x, &y); i3_flt dx = x-x0; i3_flt dy = y-y0; i3_flt x2 = (m1*dx*dx+2*m2*dx*dy+m3*dy*dy)/ab; if (x2-35) image->row[j][i] += A*i3_exp(ex); } } } } inline static void square_root_array(i3_flt * input_array, i3_flt * output_array, int n){ #ifdef USE_MKL #ifdef I3_USE_DOUBLE //In-place operations are okay. vdSqrt(n,input_array,output_array); #else vsSqrt(n,input_array,output_array); #endif #elif defined USE_VECLIB #ifdef I3_USE_DOUBLE //In-place operations are okay. vvsqrt(output_array, input_array, &n); #else vvsqrtf(output_array, input_array, &n); #endif #else for (int i=0;inx; int ny = image->ny; for(int j=0;jnx; int ny = image->ny; for(int j=0;ji3_sqrt(image->nx*image->nx + image->ny*image->ny)){ i3_add_real_space_sersic_upsample_central(image, ab,e1,e2,A,x0,y0,sersic_n,n_central_pixels_to_upsample,n_central_upsampling); return; } // Otherwise, a very similar function with a few modifications i3_flt kappa = i3_sersic_kappa(sersic_n); i3_flt sers_exponent = 0.5 / sersic_n; i3_flt m1, m2, m3; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); m1/=ab; m2/=ab; m3/=ab; int i_central, j_central; i3_image_ij_from_xy(image, x0, y0, &i_central, &j_central); int n = image->ny * image->nx; buffer_1 = realloc(buffer_1, n*sizeof(i3_flt)); buffer_2 = realloc(buffer_2, n*sizeof(i3_flt)); buffer_3 = realloc(buffer_3, n*sizeof(i3_flt)); if (image_buffer_1==NULL || image_buffer_1->nx!=image->nx || image_buffer_1->ny!=image->ny){ if (image_buffer_1) i3_image_destroy(image_buffer_1); image_buffer_1 = i3_image_like(image); } // Pay attention - these next two bits are confusing. // The number we are eventaully going to compare to is the value x2 // which is actually x^T M x, where M includes the factor 1/ab. // So we need to divide the truncation radius^2 by the same factor // as otherwise the truncation radius would depend on the galaxy radius. i3_flt truncation2 = truncation_factor * truncation_factor / ab; i3_flt modifiedTruncation2 = truncation2; // Okay, to save some time we are going to use buffer_1, which contains a distance // measure x^2, to test whether the pixel is outside the truncation radius. // Unfortunately, in one of the three cases below that buffer is re-used // and so instrad of containing x^2 instead contains sqrt(sqrt(x2)). // So in the bulge case below we also need to modify the truncation scale so it matches // the actual distance measure instead of x^2 // We need to keep truncation2 as well because we use it in the upsampled center below. square_distance_buffer(image, x0, y0, m1, m2, m3, buffer_1); if (sersic_n==1.0) { square_root_array(buffer_1,buffer_2,n); //Now buffer 2 contains sqrt(x2) = (x2)**(0.5/1) } else if (sersic_n==4.0) { //NB This overwrites buffer_1 square_root_array(buffer_1,buffer_2,n); //Now buffer 2 contains sqrt(x2) square_root_array(buffer_2,buffer_1,n); //Now buffer 1 contains sqrt(sqrt(x2)) square_root_array(buffer_1,buffer_2,n); //Now buffer 2 contains sqrt(sqrt(sqrt(x2))) = (x2)**(0.5/4) modifiedTruncation2 = i3_sqrt(i3_sqrt(modifiedTruncation2)); // See explanation above } else pow_array(buffer_1,buffer_2,sers_exponent,n); //Now buffer 2 contains (x2)**(0.5/n_s) i3_flt mKappa = -kappa; for (int p=0;pdata[p]=A*buffer_3[p]; }//Now image_buffer_1 contains A*exp[-kappa * (x2)**(0.5/n_s)] } // Now do the central upsampling bit. // Determine which central pixels to loop over int i_min = i_central - n_central_pixels_to_upsample - 1; int i_max = i_central + n_central_pixels_to_upsample + 1; int j_min = j_central - n_central_pixels_to_upsample - 1; int j_max = j_central + n_central_pixels_to_upsample + 1; if (i_min<0) i_min = 0; if (i_max>image->nx-1) i_max=image->nx-1; if (j_min<0) j_min = 0; if (j_max>image->ny-1) j_max=image->ny-1; // First loop over the subpixels for(int j=j_min;jrow[j][i] = 0.0; int upsample_count=0; // Because of the truncation we now cannot assume that all // the pixels in the upsampled region are actually used // Though this is certainly unlikely // Now loop over the sub-sub pixels. for(int j_sub = 0; j_sub truncation2) continue; upsample_count++; i3_flt ex = -kappa*i3_pow(x2, sers_exponent); image_buffer_1->row[j][i] += A*i3_exp(ex); } } // Divide by the number of sub-sub-pixels contributing to the sub-pixel image_buffer_1->row[j][i] /= upsample_count; } } } //Add this component into the result. i3_image_add_image_into(image, image_buffer_1); } void i3_add_real_space_sersic_upsample_central(i3_image * image, i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n, int n_central_pixels_to_upsample, int n_central_upsampling){ //void i3_add_real_space_sersic_truncated_radius_upsample_central(i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n, i3_flt truncation_factor, int n_central_pixels_to_upsample, int n_central_upsampling, i3_image * image){ i3_flt kappa = i3_sersic_kappa(sersic_n); i3_flt sers_exponent = 0.5 / sersic_n; i3_flt m1, m2, m3; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); m1/=ab; m2/=ab; m3/=ab; int i_central, j_central; i3_image_ij_from_xy(image, x0, y0, &i_central, &j_central); i3_flt n_central_upsampling2 = n_central_upsampling*n_central_upsampling; int n = image->ny * image->nx; buffer_1 = realloc(buffer_1, n*sizeof(i3_flt)); buffer_2 = realloc(buffer_2, n*sizeof(i3_flt)); buffer_3 = realloc(buffer_3, n*sizeof(i3_flt)); if (image_buffer_1==NULL || image_buffer_1->nx!=image->nx || image_buffer_1->ny!=image->ny){ if (image_buffer_1) i3_image_destroy(image_buffer_1); image_buffer_1 = i3_image_like(image); } square_distance_buffer(image, x0, y0, m1, m2, m3, buffer_1); if (sersic_n==1.0) { square_root_array(buffer_1,buffer_2,n); //Now buffer 2 contains sqrt(x2) = (x2)**(0.5/1) } else if (sersic_n==4.0) { //NB This overwrites buffer_1 square_root_array(buffer_1,buffer_2,n); //Now buffer 2 contains sqrt(x2) square_root_array(buffer_2,buffer_1,n); //Now buffer 1 contains sqrt(sqrt(x2)) square_root_array(buffer_1,buffer_2,n); //Now buffer 2 contains sqrt(sqrt(sqrt(x2))) = (x2)**(0.5/4) } else pow_array(buffer_1,buffer_2,sers_exponent,n); //Now buffer 2 contains (x2)**(0.5/n_s) i3_flt mKappa = -kappa; for (int p=0;pdata[p]=A*buffer_3[p];//Now image_buffer_2 contains A*exp[-kappa * (x2)**(0.5/n_s)] // Now do the central upsampling bit. // Can we re-order this loop so that we just loop over the central pixels? Or is that not possible? int i_min = i_central - n_central_pixels_to_upsample - 1; int i_max = i_central + n_central_pixels_to_upsample + 1; int j_min = j_central - n_central_pixels_to_upsample - 1; int j_max = j_central + n_central_pixels_to_upsample + 1; if (i_min<0) i_min = 0; if (i_max>image->nx-1) i_max=image->nx-1; if (j_min<0) j_min = 0; if (j_max>image->ny-1) j_max=image->ny-1; for(int j=j_min;jrow[j][i] = 0.0; for(int j_sub = 0; j_sub row[j][i] += A*i3_exp(ex) / n_central_upsampling2; } } } } } //Add this component into the result. i3_image_add_image_into(image, image_buffer_1); } // The below implementation computes all derivatives except those for e1 and e2 analytically. // The Jacobians in e1 and e2 are approximated via finite differences void i3_add_real_space_sersic_truncated_radius_upsample_central_jac(i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n, i3_flt truncation_factor, int n_central_pixels_to_upsample, int n_central_upsampling, i3_image ** image){ i3_flt truncation2 = truncation_factor*truncation_factor; i3_flt kappa = i3_sersic_kappa(sersic_n); i3_flt sers_exponent = 0.5 / sersic_n; i3_flt sersic_unchanged; i3_flt sersic_unchanged_de1; i3_flt sersic_unchanged_de2; // Initialize and compute unit shear matrix and its Jacobian i3_flt m1, m2, m3; // Commented out for now until gradient wrt e1/e2 work properly //i3_flt dm1_e1, dm2_e1, dm3_e1; //i3_flt dm1_e2, dm2_e2, dm3_e2; i3_flt m1_de1, m2_de1, m3_de1; i3_flt m1_de2, m2_de2, m3_de2; i3_flt delta = 1e-6; i3_flt d1=1E-04*e1; // force evaluation d1=FABS(d1); if(d1ny;j++){ for(int i=0;inx;i++){ i3_flt x,y; i3_image_xy_from_ij(image[0], i, j, &x, &y); // this finds if we are within n_central_pixels_to_upsample from the central pixel if((abs(i - i_central) < n_central_pixels_to_upsample) && (abs(j - j_central) < n_central_pixels_to_upsample)){ // divide the pixel into n_upsampling * n_upsampling pixels, and compute their average //printf("I am upsampling pixel %d %d\n",i,j); for(int j_sub = 0; j_sub -35) sersic_unchanged = A*i3_exp(ex) / n_central_upsampling2; sersic_unchanged_de1 = A*i3_exp(ex_de1) / n_central_upsampling2; sersic_unchanged_de2 = A*i3_exp(ex_de2) / n_central_upsampling2; i3_flt dx2; if (sers_exponent == 1) dx2 = 1.0; else dx2 = i3_pow(x2, sers_exponent-1.0); i3_flt dex = -kappa*sers_exponent*dx2 * sersic_unchanged; i3_flt jac_x0_ij = -2 * dx0 * dex; i3_flt jac_y0_ij = -2 * dy0 * dex; // Commented out for now until gradient wrt e1/e2 work properly //i3_flt jac_e1_ij = dx2_e1 * dex; //i3_flt jac_e2_ij = dx2_e2 * dex; //i3_flt jac_e1_ij = sersic_unchanged_de1/delta; //i3_flt jac_e2_ij = sersic_unchanged_de2/delta; i3_flt jac_e1_ij = (sersic_unchanged_de1-sersic_unchanged)/d1; i3_flt jac_e2_ij = (sersic_unchanged_de2-sersic_unchanged)/d2; i3_flt jac_ab_ij = -x2 / ab * dex; i3_flt jac_A_ij = sersic_unchanged; image[0]->row[j][i] += jac_x0_ij; image[1]->row[j][i] += jac_y0_ij; image[2]->row[j][i] += jac_e1_ij; image[3]->row[j][i] += jac_e2_ij; image[4]->row[j][i] += jac_ab_ij; image[5]->row[j][i] += jac_A_ij; image[6]->row[j][i] += jac_A_ij; } } } } else{ // this pixel will not be upsampled i3_flt dx = x-x0; i3_flt dy = y-y0; i3_flt x2 = (m1 *dx*dx+2*m2 *dx*dy+m3 *dy*dy)/ab; i3_flt x2_de1 = (m1_de1*dx*dx+2*m2_de1*dx*dy+m3_de1*dy*dy)/ab; i3_flt x2_de2 = (m1_de2*dx*dx+2*m2_de2*dx*dy+m3_de2*dy*dy)/ab; // Commented out for now until gradient wrt e1/e2 work properly // i3_flt dx2_e1 = (dm1_e1*dx*dx+2*dm2_e1*dx*dy+dm3_e1*dy*dy)/ab; // i3_flt dx2_e2 = (dm1_e2*dx*dx+2*dm2_e2*dx*dy+dm3_e2*dy*dy)/ab; i3_flt dx0 = (m1*dx+m2*dy)/ab; i3_flt dy0 = (m3*dy+m2*dx)/ab; if (x2-35) sersic_unchanged = A*i3_exp(ex); sersic_unchanged_de1 = A*i3_exp(ex_de1); sersic_unchanged_de2 = A*i3_exp(ex_de2); i3_flt dx2; if (sers_exponent == 1) dx2 = 1.0; else dx2 = i3_pow(x2, sers_exponent-1.0); i3_flt dex = -kappa*sers_exponent*dx2 * sersic_unchanged; i3_flt jac_x0_ij = -2 * dx0 * dex; i3_flt jac_y0_ij = -2 * dy0 * dex; // Commented out for now until gradient wrt e1/e2 work properly //i3_flt jac_e1_ij = dx2_e1 * dex; //i3_flt jac_e2_ij = dx2_e2 * dex; i3_flt jac_e1_ij = (sersic_unchanged_de1-sersic_unchanged)/delta; i3_flt jac_e2_ij = (sersic_unchanged_de2-sersic_unchanged)/delta; i3_flt jac_ab_ij = -x2 / ab * dex; i3_flt jac_A_ij = sersic_unchanged; image[0]->row[j][i] += jac_x0_ij; image[1]->row[j][i] += jac_y0_ij; image[2]->row[j][i] += jac_e1_ij; image[3]->row[j][i] += jac_e2_ij; image[4]->row[j][i] += jac_ab_ij; image[5]->row[j][i] += jac_A_ij; image[6]->row[j][i] += jac_A_ij; } } } } } // Full analytic computation of Jacobians void i3_add_real_space_sersic_truncated_radius_upsample_central_jac_exact(i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n, i3_flt truncation_factor, int n_central_pixels_to_upsample, int n_central_upsampling, i3_image ** image){ i3_flt truncation2 = truncation_factor*truncation_factor; i3_flt kappa = i3_sersic_kappa(sersic_n); i3_flt sers_exponent = 0.5 / sersic_n; i3_flt sersic_unchanged; // Initialize and compute unit shear matrix and its Jacobian i3_flt m1, m2, m3; i3_flt dm1_e1, dm2_e1, dm3_e1; i3_flt dm1_e2, dm2_e2, dm3_e2; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); i3_unit_shear_matrix_jac(e1, e2, &dm1_e1, &dm2_e1, &dm3_e1, &dm1_e2, &dm2_e2, &dm3_e2); //printf("e1=%f\n e2=%f\n dm1_e1=%f\n dm2_e1=%f\n dm3_e1=%f\n dm1_e2=%f\n dm2_e2=%f\n dm3_e2=%f\n",e1, e2, dm1_e1, dm2_e1, dm3_e1,dm1_e2, dm2_e2, dm3_e2); int i_central, j_central; i3_image_ij_from_xy(image[0], x0, y0, &i_central, &j_central); i3_flt n_central_upsampling2 = n_central_upsampling*n_central_upsampling; for(int j=0;jny;j++){ for(int i=0;inx;i++){ i3_flt x,y; i3_image_xy_from_ij(image[0], i, j, &x, &y); // this finds if we are within n_central_pixels_to_upsample from the central pixel if((abs(i - i_central) < n_central_pixels_to_upsample) && (abs(j - j_central) < n_central_pixels_to_upsample)){ // divide the pixel into n_upsampling * n_upsampling pixels, and compute their average //printf("I am upsampling pixel %d %d\n",i,j); for(int j_sub = 0; j_sub -35) sersic_unchanged = A*i3_exp(-kappa*ex) / n_central_upsampling2; i3_flt dx2; if (sers_exponent == 1) dx2 = 1.0; else if (sers_exponent == 0.5) dx2 = 1.0 / ex; else dx2 = i3_pow(x2, sers_exponent-1.0); i3_flt dex = -kappa*sers_exponent*dx2 * sersic_unchanged; i3_flt jac_x0_ij = -2 * dx0 * dex; i3_flt jac_y0_ij = -2 * dy0 * dex; i3_flt jac_e1_ij = dx2_e1 * dex; i3_flt jac_e2_ij = dx2_e2 * dex; i3_flt jac_ab_ij = -x2 / ab * dex; i3_flt jac_A_ij = sersic_unchanged; image[0]->row[j][i] += jac_x0_ij; image[1]->row[j][i] += jac_y0_ij; image[2]->row[j][i] += jac_e1_ij; image[3]->row[j][i] += jac_e2_ij; image[4]->row[j][i] += jac_ab_ij; image[5]->row[j][i] += jac_A_ij; image[6]->row[j][i] += jac_A_ij; } } } } else{ // this pixel will not be upsampled i3_flt dx = x-x0; i3_flt dy = y-y0; i3_flt x2 = (m1 *dx*dx+2*m2 *dx*dy+m3 *dy*dy)/ab; i3_flt dx2_e1 = (dm1_e1*dx*dx+2*dm2_e1*dx*dy+dm3_e1*dy*dy)/ab; i3_flt dx2_e2 = (dm1_e2*dx*dx+2*dm2_e2*dx*dy+dm3_e2*dy*dy)/ab; i3_flt dx0 = (m1*dx+m2*dy)/ab; i3_flt dy0 = (m3*dy+m2*dx)/ab; if (x2-35) sersic_unchanged = A*i3_exp(-kappa*ex); i3_flt dx2; if (sers_exponent == 1) dx2 = 1.0; else if (sers_exponent == 0.5) dx2 = 1.0 / ex; else dx2 = i3_pow(x2, sers_exponent-1.0); i3_flt dex = -kappa*sers_exponent*dx2 * sersic_unchanged; i3_flt jac_x0_ij = -2 * dx0 * dex; i3_flt jac_y0_ij = -2 * dy0 * dex; i3_flt jac_e1_ij = dx2_e1 * dex; i3_flt jac_e2_ij = dx2_e2 * dex; i3_flt jac_ab_ij = -x2 / ab * dex; i3_flt jac_A_ij = sersic_unchanged; image[0]->row[j][i] += jac_x0_ij; image[1]->row[j][i] += jac_y0_ij; image[2]->row[j][i] += jac_e1_ij; image[3]->row[j][i] += jac_e2_ij; image[4]->row[j][i] += jac_ab_ij; image[5]->row[j][i] += jac_A_ij; image[6]->row[j][i] += jac_A_ij; } } } } } static i3_flt * x2 = NULL; static i3_flt * ex = NULL; static i3_flt * dex = NULL; static i3_flt * dx0 = NULL; static i3_flt * dy0 = NULL; static i3_flt * dx2_e1 = NULL; static i3_flt * dx2_e2 = NULL; static i3_flt * sersic_unchanged = NULL; void i3_add_real_space_sersic_truncated_radius_upsample_central_jac_exact_vec(i3_flt ab,i3_flt e1,i3_flt e2,i3_flt A,i3_flt x0,i3_flt y0,i3_flt sersic_n, i3_flt truncation_factor, int n_central_pixels_to_upsample, int n_central_upsampling, i3_image ** image){ // i3_flt truncation2 = truncation_factor*truncation_factor; i3_flt kappa = i3_sersic_kappa(sersic_n); i3_flt sers_exponent = 0.5 / sersic_n; // Initialize and compute unit shear matrix and its Jacobian i3_flt m1, m2, m3; i3_flt dm1_e1, dm2_e1, dm3_e1; i3_flt dm1_e2, dm2_e2, dm3_e2; i3_unit_shear_matrix(e1, e2, &m1, &m2, &m3); i3_unit_shear_matrix_jac(e1, e2, &dm1_e1, &dm2_e1, &dm3_e1, &dm1_e2, &dm2_e2, &dm3_e2); m1 /= ab; dm1_e1 /= ab; dm1_e2 /= ab; m2 /= ab; dm2_e1 /= ab; dm2_e2 /= ab; m3 /= ab; dm3_e1 /= ab; dm3_e2 /= ab; int i_central, j_central; i3_image_ij_from_xy(image[0], x0, y0, &i_central, &j_central); i3_flt n_central_upsampling2 = n_central_upsampling*n_central_upsampling; int n = image[0]->ny * image[0]->nx; x2 = realloc(x2 , n*sizeof(i3_flt)); ex = realloc(ex , n*sizeof(i3_flt)); dex = realloc(dex, n*sizeof(i3_flt)); dx0 = realloc(dx0, n*sizeof(i3_flt)); dy0 = realloc(dy0, n*sizeof(i3_flt)); dx2_e1 = realloc(dx2_e1 , n*sizeof(i3_flt)); dx2_e2 = realloc(dx2_e2 , n*sizeof(i3_flt)); sersic_unchanged = realloc(sersic_unchanged, n*sizeof(i3_flt)); // Computation of Mahalanobis distance arrays square_distance_buffer(image[0], x0, y0, m1, m2, m3, x2); square_distance_buffer(image[0], x0, y0, dm1_e1, dm2_e1, dm3_e1, dx2_e1); square_distance_buffer(image[0], x0, y0, dm1_e2, dm2_e2, dm3_e2, dx2_e2); jac_square_distance_buffer(image[0], x0, y0, m1, m2, dx0); jac_square_distance_buffer(image[0], x0, y0, m2, m3, dy0); if (sersic_n==0.5){ for (int p=0;pdata[p] += -2 * dx0[p] * dsersic_unchanged; image[1]->data[p] += -2 * dy0[p] * dsersic_unchanged; image[2]->data[p] += dx2_e1[p] * dsersic_unchanged; image[3]->data[p] += dx2_e2[p] * dsersic_unchanged; image[4]->data[p] += -x2[p] / ab * dsersic_unchanged; image[5]->data[p] += sersic_unchanged[p]; image[6]->data[p] += sersic_unchanged[p]; } // Now do the central upsampling bit. // Can we re-order this loop so that we just loop over the central pixels? Or is that not possible? int i_min = i_central - n_central_pixels_to_upsample - 1; int i_max = i_central + n_central_pixels_to_upsample + 1; int j_min = j_central - n_central_pixels_to_upsample - 1; int j_max = j_central + n_central_pixels_to_upsample + 1; if (i_min<0) i_min = 0; if (i_max>image[0]->nx-1) i_max=image[0]->nx-1; if (j_min<0) j_min = 0; if (j_max>image[0]->ny-1) j_max=image[0]->ny-1; for(int j=j_min;jrow[j][i] = 0.0; for(int j_sub = 0; j_sub row[j][i] += -2 * dx0 * dsersic_unchanged; image[1]->row[j][i] += -2 * dy0 * dsersic_unchanged; image[2]->row[j][i] += dx2_e1 * dsersic_unchanged; image[3]->row[j][i] += dx2_e2 * dsersic_unchanged; image[4]->row[j][i] += -x2 / ab * dsersic_unchanged; image[5]->row[j][i] += sersic_unchanged; image[6]->row[j][i] += sersic_unchanged; } } } } } } i3_flt i3_weighted_residual_variance(i3_image * model_image, i3_image * observed_image, i3_image * weight_map) { i3_flt mu_m = 0.0; i3_flt mu_d = 0.0; i3_flt w_sum = 0.0; for(int pixel=0;pixeln;pixel++){ mu_m += model_image->data[pixel] * weight_map->data[pixel]; mu_d += observed_image->data[pixel] * weight_map->data[pixel]; w_sum += weight_map->data[pixel]; } mu_m /= w_sum; mu_d /= w_sum; i3_flt mu_r = mu_m - mu_d; i3_flt s2 = 0.0; for(int pixel=0;pixeln;pixel++){ s2 += pow(model_image->data[pixel] - observed_image->data[pixel] - mu_r, 2) * weight_map->data[pixel]; } return s2/w_sum; } i3_flt i3_chi2_weight_map(i3_image * model_image, i3_image * observed_image, i3_image * weight_image){ i3_flt chi2=0; i3_flt * predicted = model_image->data; i3_flt * observed = observed_image->data; i3_flt * weight = weight_image->data; for(int pixel=0;pixeln;pixel++){ i3_flt diff = predicted[pixel]-observed[pixel]; chi2+= diff*diff*weight[pixel]; } return chi2; } i3_flt i3_chi2_white_noise(i3_image * model_image, i3_image * observed_image, i3_flt noise_std){ i3_flt chi2=0; i3_flt noise_var= noise_std*noise_std; i3_flt * predicted = model_image->data; i3_flt * observed = observed_image->data; for(int pixel=0;pixeln;pixel++){ i3_flt diff = predicted[pixel]-observed[pixel]; chi2+= diff*diff; } return chi2/noise_var; } i3_flt i3_chi2_wn_reduced(i3_image * model_image, i3_image * observed_image, i3_flt noise_std){ i3_flt chi2=0; i3_flt noise_var= noise_std*noise_std; i3_flt * predicted = model_image->data; i3_flt * observed = observed_image->data; for(int pixel=0;pixeln;pixel++){ chi2 += predicted[pixel]*predicted[pixel] + 2.*observed[pixel]*predicted[pixel]; } return chi2/noise_var/2.; } i3_flt i3_pixel_shift_image(i3_image * image, i3_image * shifted, int dx, int dy) { i3_image_zero(shifted); for(int j=0; jny; j++){ if ((j-dy<0) || (j-dy>=image->ny)) continue; for(int i=0; inx; i++){ if ((i-dx<0) || (i-dx>=image->nx)) continue; shifted->row[j][i] = image->row[j-dy][i-dx]; } } } i3_flt i3_logL_weight_map_marginalize_amplitude(i3_image * model_image, i3_image * observed_image, i3_image * weight_image){ i3_flt * model = model_image->data; i3_flt * observed = observed_image->data; i3_flt * weight = weight_image->data; i3_flt sum_mi = 0.0; i3_flt sum_ii = 0.0; i3_flt sum_mm = 0.0; for(int pixel=0;pixeln;pixel++){ sum_ii += observed[pixel] * observed[pixel] * weight[pixel]; //I'm just including this for completeness. It is a constant term if the weights are fixed. sum_mi += model[pixel] * observed[pixel] * weight[pixel]; sum_mm += model[pixel] * model[pixel] * weight[pixel]; } // A1 = inv_mm11 * sum_mi1 + inv_mm12 * sum_mi2; i3_flt logL = -0.5*(i3_log(sum_mm) - (sum_mi*sum_mi/sum_mm) + sum_ii); return logL; } i3_flt i3_logL_weight_map_maximise_amplitude_2components(i3_image * model_image1, i3_image * model_image2, i3_image * observed_image, i3_image * weight_image, i3_flt * amplitude1, i3_flt * amplitude2){ /* Calculate statistics of the image */ i3_flt sum_ii = 0.0; i3_flt sum_mi1 = 0.0; // Ideally would make this an n-component length vector i3_flt sum_mi2 = 0.0; i3_flt sum_mm11 = 0.0; // Ideally would make an n-component x n-component matrix i3_flt sum_mm12 = 0.0; // The matrix is symmetric i3_flt sum_mm22 = 0.0; /* Create some temporary space */ i3_flt observed; i3_flt model1; i3_flt model2; i3_flt weight; for(int pixel=0;pixeln;pixel++){ observed = observed_image->data[pixel]; model1 = model_image1->data[pixel]; // Ideally would loop over components here model2 = model_image2->data[pixel]; weight = weight_image->data[pixel]; sum_ii += observed * observed * weight; sum_mi1 += model1 * observed * weight; sum_mi2 += model2 * observed * weight; sum_mm11 += model1 * model1 * weight; sum_mm12 += model1 * model2 * weight; sum_mm22 += model2 * model2 * weight; } /* Invert the 2x2 model component dot product matrix by hand (could use matrix libraries etc) */ i3_flt inv_mm11; i3_flt inv_mm12; i3_flt inv_mm22; i3_flt det_sum_mm; i3_flt A1; i3_flt A2; i3_flt very_small_number = 1e-12; //if (sum_mm11==0 && sum_mm22==0){ floating point comparison never works if(i3_fabs(sum_mm11)n;pixel++){ observed = observed_image->data[pixel]; model1 = model_image1->data[pixel]; // Ideally would loop over components here model2 = model_image2->data[pixel]; weight = weight_image->data[pixel]; sum_ii += observed * observed * weight; sum_mi1 += model1 * observed * weight; sum_mi2 += model2 * observed * weight; sum_mm11 += model1 * model1 * weight; sum_mm12 += model1 * model2 * weight; sum_mm22 += model2 * model2 * weight; } /* Invert the 2x2 model component dot product matrix by hand (could use matrix libraries etc) */ i3_flt inv_mm11; i3_flt inv_mm12; i3_flt inv_mm22; i3_flt det_sum_mm; i3_flt A1; i3_flt A2; i3_flt very_small_number = 1e-12; //if (sum_mm11==0 && sum_mm22==0){ floating point comparison never works if(i3_fabs(sum_mm11) logL2 && 0){ logL = logL1; A1 = AP1; A2 = 0.; i3_image_weighted_add_image_into(model_image1,A1,model_image2,A2); } else{ logL = logL2; A1 = 0.; A2 = AP2; i3_image_weighted_add_image_into(model_image1,A1,model_image2,A2); } }else{ /* Get the summed image, weighted by the best-fit amplitude of each component */ i3_image_weighted_add_image_into(model_image1,A1,model_image2,A2); /* model_image1 now contains the full image with best fit amplitudes for each compt */ logL = -0.5*i3_chi2_weight_map(model_image1, observed_image, weight_image); } // Should be able to replace the above using the pre-computed quantities - should work and save computation time // In practice gives different answer presumably due wildly different sizes of the terms // including giving positive likelihoods. //i3_flt sum_mm11_r = sum_mm11 * A1 * A1; // rescaled //i3_flt sum_mm22_r = sum_mm22 * A2 * A2; //i3_flt sum_mm12_r = sum_mm12 * A1 * A2; //i3_flt sum_mi1_r = sum_mi1 * A1; //i3_flt sum_mi2_r = sum_mi2 * A2; //i3_flt logL_ck = -0.5*( sum_ii - 2.0*sum_mi1_r -2.0*sum_mi2_r + sum_mm11_r + 2.0*sum_mm12_r + sum_mm22_r ); // N.B. This ignores the normalisation pre-factor from the log(Likelihood) i.e. the 1/sqrt(2 pi sigma^n) part. Would need to put that back in e.g. if comparing different noise levels or estimating noise level from the image itself // The below equations apply for 1 component models, left in for this repo update in case ever handy //inv_mm11 = 1.0 / sum_mm11; //A1 = inv_mm11 * sum_mi1; //A2=0; //i3_flt logL = -0.5*(sum_ii - 2.0*sum_mi1*A1 + sum_mm11*A1*A1); //i3_flt logL = -0.5*(sum_ii - sum_mi1*sum_mi1/sum_mm11); // we return with model_image1 containing the best fit image *amplitude1 = A1; *amplitude2 = A2; return logL; } i3_flt i3_logL_white_noise_marg_A(i3_image * model_image, i3_image * observed_image, i3_flt noise_std){ i3_flt noise_var= noise_std * noise_std; i3_flt * model = model_image->data; i3_flt * observed = observed_image->data; i3_flt sum_mi = 0.0; i3_flt sum_m = 0.0; for(int pixel=0;pixeln;pixel++){ // printf("%d \t",pixel); sum_mi += model[pixel] * observed[pixel]; sum_m += model[pixel] * model[pixel]; } i3_flt logL = sum_mi*sum_mi/sum_m/noise_var/2.f + i3_log(i3_sqrt(M_PI / sum_m * 2.f * noise_var )); return logL; } i3_flt i3_logL_white_noise_marg_A_xy0(i3_image * model_image, i3_image * observed_image, i3_flt noise_std, int n_additional_pix, int n_sub_pix){ int N_sub2 = n_sub_pix*n_sub_pix; int N_obs = observed_image->nx; int N_mod = N_obs + n_additional_pix*2; int N_mod2 = N_mod*N_mod; i3_flt * logL_xy0 = i3_logL_in_xy0(model_image,observed_image,noise_std,n_additional_pix,n_sub_pix); i3_flt scale = i3_array_max_value( logL_xy0, N_sub2*N_mod2); i3_flt * pdf_xy0 = i3_array_exp_scale( logL_xy0, N_sub2*N_mod2, scale); i3_flt logL_marg_xy0 = i3_array_sum(pdf_xy0, N_sub2*N_mod2); logL_marg_xy0 = i3_log(logL_marg_xy0); // testing // printf("scale = %4.4f \nlogL_marg_xy0 = %4.4f \n",scale,logL_marg_xy0); free(logL_xy0); free(pdf_xy0); return logL_marg_xy0 + scale; } i3_flt * i3_logL_in_xy0(i3_image * model_image, i3_image * observed_image, i3_flt noise_std, int n_additional_pix, int n_sub_pix){ int N_sub = n_sub_pix; int N_add = n_additional_pix; i3_flt noise_var= noise_std * noise_std; i3_flt sum_mi = 0.0; i3_flt sum_m = 0.0; int N_sub2 = N_sub*N_sub; int N_obs = observed_image->nx; // int N_obs2 = N_obs*N_obs; int N_win = (N_add*2+1); int N_win2 = N_win*N_win; //printf("image_model size %d %d\n",(int)model_image->nx,(int)model_image->nx); //printf("image_observed size %d %d\n",(int)observed_image->nx,(int)observed_image->nx); //printf("N_sub %d N_add %d N_mod %d\n",N_sub,N_add,N_mod); i3_flt * logL_xy0 = malloc(sizeof(i3_flt)*N_sub2*N_win2); for(int i=0;irow[ns1 + na1*N_sub + np1*N_sub][ns2 + na2*N_sub + np2*N_sub] * observed_image->row[np1][np2]; sum_m += model_image->row[ns1 + na1*N_sub + np1*N_sub][ns2 + na2*N_sub + np2*N_sub]; //sum_mi += model_image->row[ns1 + np1*N_sub][ns2 + np2*N_sub] * observed_image->row[np1][np2]; //sum_m += model_image->row[ns1 + np1*N_sub][ns2 + np2*N_sub]; } } logL_xy0[ns] = sum_mi*sum_mi/sum_m/noise_var/2.f + i3_log(i3_sqrt(M_PI / sum_m * 2.f * noise_var )); ns++; } } } } // i3_flt * pdf_xy = i3_pdf_from_logL(logL_xy, ns); // i3_flt logL_marg_xy = 0.0; // for(int i=0;idata; // i3_cpx * observed = observed_fourier->data; int nx_f = model_fourier->nx_f; int ny_f = model_fourier->ny_f; for (int i=0;irow[i][0] - observed_fourier->row[i][0] ),2); for(int j=1;jrow[i][j] - observed_fourier->row[i][j] ),2); } } return chi2/sigma2/model_fourier->n_real; } i3_flt * i3_chi2_with_models_white_noise(i3_image ** all_models, int n_models, i3_image * observed_image, i3_flt noise_std){ if(!all_models) return NULL; if(!observed_image) return NULL; i3_flt * chisq_set = malloc(sizeof(i3_flt)*n_models); for(int nm = 0; nm < n_models; nm++){ chisq_set[nm] = -1.f * i3_chi2_white_noise( all_models[nm], observed_image, noise_std ); }; return chisq_set; } i3_flt * i3_logL_with_models_white_noise_marg_A(i3_image ** all_models, int n_models, i3_image * observed_image, i3_flt noise_std){ if(!all_models) I3_FATAL("no image models cube supplied",1); if(!observed_image) I3_FATAL("no noisy image supplied",1); i3_flt * logL = malloc(sizeof(i3_flt)*n_models); for(int nm = 0; nm < n_models; nm++){ if(!all_models[nm]) I3_FATAL("model in the cube doesn't exist'",1); logL[nm] = i3_logL_white_noise_marg_A( all_models[nm] , observed_image, noise_std ); }; return logL; } i3_flt * i3_logL_with_models_white_noise_fast(i3_image ** all_models, int n_models, i3_flt * models_e1, i3_flt * models_e2, i3_image * observed_image, i3_flt e1, i3_flt e2, i3_flt cut_off , i3_flt noise_std, int metric){ if(!all_models) I3_FATAL("all models array is NULL",1); if(!models_e1) I3_FATAL("models_e1 array is NULL",1); if(!models_e2) I3_FATAL("models_e2 is NULL",1); if(!observed_image) I3_FATAL("observed image array is NULL",1); i3_flt * logL = malloc(sizeof(i3_flt)*n_models); for(int nm = 0; nm < n_models; nm++){ if( i3_fabs( models_e1[nm] - e1 ) < cut_off && i3_fabs( models_e2[nm] - e2 ) < cut_off ) if(metric==0) logL[nm] = -1.f*i3_chi2_white_noise( all_models[nm], observed_image, noise_std ); if(metric==1) logL[nm] = i3_logL_white_noise_marg_A( all_models[nm], observed_image, noise_std ); else logL[nm] = -1e10f; }; return logL; } i3_flt * i3_marginalise_r(i3_flt * pdf_full, int n_pdf_full, int n_pdf_marg){ if(n_pdf_full%n_pdf_marg != 0) I3_FATAL("i3_marginalise_r: n_pdf_full mod n_pdf_marg != 0 \n",1); i3_flt * pdf_marg = malloc(sizeof(i3_flt)*n_pdf_marg); for(int npm=0;npmnParam; int i = mcmc->nSamples%np; i3_flt c[np]; i3_flt p[np]; i3_flt w[np]; /* We take care not to vary the parameters which are supposed to be fixed */ i3_model_extract_varied_nonzero_width_parameters(mcmc->model, current,mcmc->width, c); i3_model_extract_varied_nonzero_width_parameters(mcmc->model, proposed,mcmc->width, p); i3_model_extract_varied_nonzero_width_parameters(mcmc->model, mcmc->width,mcmc->width, w); /* If necessary, create a new random rotation */ if(i==0 && mcmc->propose_rotation) { i3_random_rotation(mcmc->random_rotation,mcmc->nParam); } /* Jump in the random direction by a random normal distance*/ i3_flt lambda = mcmc->scaling_parameter * i3_random_normal(); if (mcmc->propose_rotation) lambda /= i3_sqrt(mcmc->nParam); // If we do not have a covariance matrix then just use a diagonal one, // with widths if (mcmc->cov_sqrt==NULL){ for(int b=0;brandom_rotation[i+np*b]; } // Otherwise use the covmat sqrt. else{ for(int b=0;bcov_sqrt[b*np+q] * mcmc->random_rotation[i*np+q]; } } } /* Now turn the vector back into a parameter set*/ i3_model_input_varied_nonzero_width_parameters(mcmc->model, p, proposed, mcmc->width, current); } /* Circular Moffat profile function - rc_in is the truncation radius. Only GREAT08 uses truncated Moffats... For GREAT10 we can just set rc_in to be larger than the images. Everything else is self-explanatory, see e.g. Bridle et al 2010. The function takes scalar input / output... Could be made faster by vector calls using whole images of sheared x, y. ... Non-C expert Barney asks, is it quicker to pass these simple arguments by reference? */ i3_flt i3_moffat(i3_flt r2_in, i3_flt rd2_in, i3_flt rc2_in, i3_flt beta_in){ i3_flt ans; if (r2_in >= rc2_in) { ans = 0.; } else { /* Get the Moffat profile */ ans = i3_pow(1.f + r2_in / rd2_in, -beta_in); } return ans; } i3_flt i3_moffat_rd2(i3_flt fwhm_in, i3_flt beta_in){ /* Calculate the Moffat scale radius rd^2 from the FWHM and beta this should be done once then used as input to the Moffat function i3_moffat(...) */ if (beta_in==3) { return 0.25*fwhm_in*fwhm_in/1.203/1.203; } else I3_FATAL("I do not think i3_moffat_rd2 is consistent with Great10 definitiions. Need to check",12); i3_flt ans; ans = 0.25f * fwhm_in * fwhm_in / (i3_pow(2.f, 1.f / beta_in) - 1.f); return ans; } /* Bessel function J1(x) adapted from Numerical recipes, used for Airy PSF models */ i3_flt i3_bessj1(i3_flt x){ i3_flt ax,z; double xx,y,ans,ans1,ans2; if ((ax=i3_fabs(x)) < 8.0) { y=x*x; ans1=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1 +y*(-2972611.439+y*(15704.48260+y*(-30.16036606)))))); ans2=144725228442.0+y*(2300535178.0+y*(18583304.74 +y*(99447.43394+y*(376.9991397+y*1.0)))); ans=ans1/ans2; } else { z=8.0/ax; y=z*z; xx=ax-2.356194491; ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4 +y*(0.2457520174e-5+y*(-0.240337019e-6)))); ans2=0.04687499995+y*(-0.2002690873e-3 +y*(0.8449199096e-5+y*(-0.88228987e-6 +y*0.105787412e-6))); ans=i3_sqrt(0.636619772/ax)*(i3_cos(xx)*ans1-z*i3_sin(xx)*ans2); if (x < 0.0) ans = -ans; } return ans; } i3_flt i3_airy(i3_flt x_in, i3_flt y_in, i3_flt fwhm_in, i3_flt rc_in){ /* Calculates circular airy function - input scalars, output scalars, as for i3_moffat(...) might get better speed using vector libraries on a whole image... */ i3_flt r2, x, y, ans; r2 = x_in * x_in + y_in * y_in; if (r2 >= (rc_in * rc_in)) { ans = 0.; } else { x = i3_sqrt(r2) * M_PI * 1.028993969962188 / fwhm_in; y = i3_bessj1(x); ans = 4. * y * y / x / x; } return ans; } i3_flt i3_fwhm_to_ab(i3_flt fwhm, i3_flt sersic_n){ i3_flt k = i3_sersic_kappa(sersic_n); #define NATURAL_LOG_2 0.693147181 i3_flt r_e = fwhm/2.0 / powf(NATURAL_LOG_2/k,sersic_n); i3_flt ab = r_e*r_e; return ab; } i3_flt i3_r_to_fwhm(i3_flt r, i3_flt sersic_n){ i3_flt k = 1.9992*sersic_n-0.3271; //From Voigt & Bridle 2009 #define NATURAL_LOG_2 0.693147181 i3_flt fwhm = 2.0 * r * powf(NATURAL_LOG_2/k,sersic_n); return fwhm; } i3_flt i3_snr_to_noise_std(i3_flt snr, i3_image * image){ return i3_image_norm(image) / snr; } // int factorial(int n){ // int r=1; // for(int i=1;i<=n;i++) r*=i; // return r; // } // static i3_flt i3_sersic_integrand_function(i3_flt s) // { // i3_flt s2=s*s; // i3_flt s3=s2*s; // i3_flt s4=s3*s; // i3_flt s5=s4*s; // i3_flt s6=s5*s; // i3_flt s7=s6*s; // return 5040.-exp(-s)*(s7+7*s6+42*s5+210*s4+840*s3+2520*s2+5040*s+5040); // } i3_flt i3_sersic_total_flux(i3_flt n, i3_flt A, i3_flt ab) { i3_flt k = i3_sersic_kappa(n);; i3_flt gamma = gsl_sf_gamma(2*n); i3_flt F = 2*M_PI*n*pow(k,-2*n)*ab*A*gamma; return F; } i3_flt i3_sersic_flux_to_radius(i3_flt n, i3_flt A, i3_flt ab, i3_flt r) { i3_flt r_e = sqrt(ab); i3_flt k = i3_sersic_kappa(n); i3_flt gamma = gsl_sf_gamma(2*n) - gsl_sf_gamma_inc(2*n,k*pow(r/r_e,1./n)); i3_flt F = 2*M_PI*n*pow(k,-2*n)*ab*A*gamma; return F; } // // // i3_flt i3_sersic_total_flux(i3_flt sersic_index, i3_flt amplitude, i3_flt ab) // { // int s = (int) sersic_index; // if (s!=sersic_index) I3_FATAL("You have called i3_sersic_total_flux with a non-integer sersic index. You need to add a gamma function implementation to do this,",2); // i3_flt k = 1.9992*s-0.3271; // i3_flt gamma = factorial(2*s-1); // i3_flt F = 2*M_PI*s*pow(k,-2*s)*ab*amplitude*gamma; // return F; // } i3_flt * i3_pdf_from_logL(i3_flt * logL, int n){ i3_flt scale = i3_array_max_value( logL, n); i3_flt * pdf = i3_array_exp_scale(logL,n,scale); i3_array_normalise( pdf, n ); return pdf; } i3_flt i3_estimate_noise_rms_observed_model(i3_image * observed, i3_image * model, i3_image * mask) { i3_flt noise_variance = 0.0; int n = 0; for(int i=0;in;i++){ if (mask->data[i]!=0){ n++; noise_variance += pow(model->data[i] - observed->data[i],2); } } noise_variance/=n; i3_flt noise = i3_sqrt(noise_variance); return noise; } i3_flt i3_signal_to_noise_with_weight(i3_image * model, i3_image * weight) { i3_flt snr=0.0; for (int i=0; in; i++){ snr += weight->data[i] * pow(model->data[i],2); } return i3_sqrt(snr); } i3_flt i3_signal_to_noise_with_weight_and_data(i3_image * model, i3_image * image, i3_image * weight) { i3_flt top=0.0; i3_flt bottom=0.0; for (int i=0; in; i++){ top += weight->data[i] * model->data[i] * image->data[i]; bottom += weight->data[i] * model->data[i] * model->data[i]; } return top/i3_sqrt(bottom); } i3_flt i3_signal_to_noise_model_fitted(i3_image * observed, i3_image * model, i3_image * mask) { i3_flt noise=i3_estimate_noise_rms_observed_model(observed, model, mask); return i3_signal_to_noise_fit(model, noise, mask); } i3_flt i3_signal_to_noise_fit(i3_image * model, i3_flt noise, i3_image * mask) { i3_flt sum_model_squared = 0; for(int i=0;in;i++){ if (mask->data[i]!=0) sum_model_squared += pow(model->data[i],2); } i3_flt rms = i3_sqrt(sum_model_squared); return rms/noise; } void i3_ellipticity_eta_to_e(i3_flt eta1, i3_flt eta2, i3_flt * e1, i3_flt * e2){ i3_flt eta = i3_sqrt(eta1*eta1+eta2*eta2); i3_flt e = (1.-i3_exp(-eta))/(1.+i3_exp(-eta)); i3_flt theta = 0.5*i3_atan2(eta2,eta1); *e1 = e*cos(2.*theta); *e2 = e*sin(2.*theta); } void i3_ellipticity_e_to_eta(i3_flt e1, i3_flt e2, i3_flt * eta1, i3_flt * eta2){ i3_flt e = i3_sqrt(e1*e1+e2*e2); i3_flt theta = 0.5*i3_atan2(e2,e1); i3_flt eta = i3_log((1.+e)/(1.-e)); *eta1 = eta*cos(2.*theta); *eta2 = eta*sin(2.*theta); } i3_flt i3_sersic_log_flux_to_amplitude(i3_flt log_flux, i3_flt sersic_index, i3_flt ab){ return i3_exp(log_flux) / i3_sersic_total_flux(sersic_index, 1.0, ab); } static i3_flt log_factorial(int n) { i3_flt log_fact = 0.0; for (int c = 1; c <= n; c++){ log_fact += i3_log((i3_flt) c); } return log_fact; } i3_flt i3_poisson_like(i3_image * model_image, i3_image * observed_image) { i3_flt loglike = 0.0; for (int p=0; pn;p++){ i3_flt lambda = model_image->data[p]; i3_flt k = observed_image->data[p]; loglike += k*i3_log(lambda) - lambda - log_factorial(k); } return loglike; } i3_flt i3_poisson_like_exposure_background(i3_image * model_image, i3_image * observed_image, i3_image * exposure_map, i3_flt background) { i3_flt loglike = 0.0; for (int p=0; pn;p++){ if (exposure_map->data[p]==0) continue; i3_flt lambda = (model_image->data[p]) * exposure_map->data[p] + background; i3_flt k = observed_image->data[p]; loglike += k*i3_log(lambda) - lambda - log_factorial(k); } return loglike; }