#include "i3_mcmc.h" #include "i3_load_data.h" #include "i3_math.h" #include "i3_model.h" #include "i3_minimizer.h" #include "i3_fisher.h" #include "i3_mcmc.h" #include "i3_utils.h" #include "i3_great.h" #include "i3_image_fits.h" #include "i3_analyze.h" #include "i3_catalog.h" #include "models/i3_sersics.h" #include "i3_version.h" #include "i3_pywrapper.h" #include "i3_meds.h" #include void i3_analyze_wrapper(i3_image * galaxy, i3_image * psf_image, i3_image * weight_image, i3_image * mask_image, i3_image * bestI, i3_options * options, gal_id identifier, i3_flt x, i3_flt y, i3_result * result, int starting_params_only){ //We run a few functions to initialize FFTW and the RNG. //i3_fftw_load_wisdom(); //atexit(i3_fftw_save_wisdom); i3_init_rng(); // SLB: should we be doing this instead:? i3_init_rng_multiprocess(proc_id); //Set verbosity level i3_set_verbosity(options->verbosity); //Create basic information and space for the chosen model (e.g. milestone) i3_model * model = i3_model_create(options->model_name,options); i3_parameter_set * params_ml; i3_image * weight_stamp; if (weight_image){ weight_stamp = i3_image_cut_out_stamp(weight_image,options->stamp_size); } else { //Make a dummy weight image. Assume noise level is constant across image weight_stamp = i3_image_create(options->stamp_size,options->stamp_size); if(options->noise_sigma>0) i3_image_fill(weight_stamp,pow(options->noise_sigma,-2)); else i3_image_fill(weight_stamp,1.); } //Set the minimizer method as levmar i3_minimizer_method method; method = (i3_minimizer_method) options->minimizer_method; // is this an OK place to put this?? I guess we don't want to set in ini file? //Set up space for the best likelihood, best parameters and best image i3_flt bestL = 0; FILE * output; if (options->save_output){ char output_filename[256]; snprintf(output_filename,256,"%s/%s",options->output_directory,options->output_filename); //Prepare the output file output = fopen(output_filename,"a"); if(!output) I3_FATAL("Cannot open output file for writing",1); } clock_t start_time = clock(); //The concept of a different image and stamp size is now obselete (given that we have the catalogue) // int image_size = options->stamp_size; // Arghh, we need to fit a background level for ClusterSTEP, DES etc // Bodge this in really messily for now.... Sorry... SLB. // This is not a bad fix for ClusterSTEP but will bias GREAT runs which have no background // Ideally the options file would include a switch for whether or not we estimate the background // This "background_estimate" step should go into a function really... if (options->background_subtract) { i3_flt background_estimate = i3_image_subtract_background(galaxy); i3_print(i3_verb_noisy,"background_estimate = %20.10f",background_estimate); } // Not convinced the below line is currently doing this (seems to run with ix<0) i3_image * stamp = i3_image_cut_out_stamp(galaxy,options->stamp_size); if (!stamp) I3_FATAL("Failed to cut stamp out from galaxy",3); if (mask_image) { i3_image * mask_stamp = i3_image_cut_out_stamp(mask_image,options->stamp_size); i3_image_multiply_mask(weight_stamp, mask_stamp); i3_image_destroy(mask_stamp); } //Scale the image and noise to unit maximum if (options->rescale_stamp) { i3_flt scaling = fabs(1.0/i3_image_sum_masked(stamp, weight_stamp)); i3_print(i3_verb_noisy, "Image scaling = %le", scaling); i3_image_scale(stamp,scaling); i3_flt weight_scaling = pow(scaling,-2); i3_image_scale(weight_stamp,weight_scaling); //if(options->noise_sigma>0) i3_image_fill(weight_stamp,pow(options->noise_sigma*scaling,-2)); } if (options->circularize_mask){ i3_image_circular_mask(weight_stamp); } i3_data_set * data_set; data_set = i3_build_dataset_with_psf_image(options, identifier, stamp, weight_stamp, psf_image); //Modify the PSF FWHM definition to match the GREAT08 (and therefore also GREAT10?) simulation code //this_psf->fwhm = this_psf->fwhm * pow(1 - this_psf->e1*this_psf->e1 - this_psf->e2*this_psf->e2 , 0.5); //printf("%2.2f %2.2f %2.2f %2.2f \n",this_psf->beta,this_psf->fwhm,this_psf->e1,this_psf->e2); //Now run the main image analysis on this postage stamp - see i3_analyze.c //i3_flt mincheck = i3_image_min(stamp); //printf("mincheck = %20.10f\n",mincheck); //i3_data_set * data_set = i3_build_dataset(options,stamp,weight_stamp,this_psf,psf_type); /* for debugging (Michael) char optname[256]; snprintf(optname,256,"%s/py_options.txt",options->output_directory); i3_options_save(optname,data_set->options); i3_image_print_first_element_of_each_row(stamp); */ // argh haven't thought about the value of weight_stamp for non-GREAT10 images... if (starting_params_only) { // skip the analysis and just run on the starting parameters, // for example to get images for a previously found best fit. params_ml = i3_model_option_starts(model, options); // Get likelihood and model image bestL = i3_model_likelihood(model, bestI, params_ml, data_set); } else { //Do the proper analysis params_ml = i3_analyze_dataset_method(data_set,model,options,&bestL,bestI,method); } //Calculate minimum and maximum of residuals map i3_image * residuals = i3_image_weighted_add_image(stamp,1.0,bestI,-1.0); i3_flt min_residuals = i3_image_min_masked(residuals, data_set->weight); i3_flt max_residuals = i3_image_max_masked(residuals, data_set->weight); // get additional image information // i3_flt image_args = 0.5; i3_flt image_info = 0.0; // if(0==strcmp(model->name,"sersics") && 0==strcmp(options->psf_input,"moffat_catalog")){ // i3_sersics_get_image_info(params_ml, data_set, &image_args, &image_info); // } i3_flt model_min = i3_image_min(bestI); i3_flt model_max = i3_image_max(bestI); clock_t end_time = clock(); double time_taken = (double)(end_time-start_time) / CLOCKS_PER_SEC; i3_catalog_row * row = malloc(sizeof(i3_catalog_row)); row->x = x; row->y = y; row->id = identifier; row->catalog_row = identifier; if (options->save_output){ //Save the results save_result_im3shape(options,model,params_ml,bestL,output,row,data_set,min_residuals,max_residuals, model_min, model_max, time_taken, &image_info); if(options->verbosity>=i3_verb_noisy){ printf("im3shape ML parameters: \n"); } } if(options->verbosity>=i3_verb_standard){ save_result_im3shape(options,model,params_ml,bestL,stdout,row,data_set,min_residuals,max_residuals, model_min, model_max, time_taken, &image_info); } copy_result_im3shape_to_struct(options,model,params_ml,bestL,result,identifier,data_set,min_residuals,max_residuals, model_min, model_max, time_taken, &image_info); if (options->save_images){ char filename[256]; snprintf(filename,256,"%s/model.%ld.fits",options->output_directory,identifier); i3_image_save_fits(bestI,filename); snprintf(filename,256,"%s/image.%ld.fits",options->output_directory,identifier); i3_image_save_fits(stamp,filename); snprintf(filename,256,"%s/psf.%ld.fits",options->output_directory,identifier); if (psf_image) i3_image_save_fits(psf_image,filename); snprintf(filename,256,"%s/weight.%ld.fits",options->output_directory,identifier); i3_image_save_fits(weight_stamp,filename); } //Clean up i3_dataset_destroy(data_set); i3_image_destroy(stamp); i3_image_destroy(residuals); if (options->save_output){ fflush(output); fclose(output); } free(params_ml); i3_model_destroy(model); i3_image_destroy(weight_stamp); free(row); end_time = clock(); time_taken = (double)(end_time-start_time) / CLOCKS_PER_SEC; if(options->timeit){ fprintf(stdout,"Total time for processing galaxy image in C: %2.2fs\n",time_taken); }; // return (i3_result*) result; //(i3_parameter_set*) params_ml; } void i3_analyze_exposures_wrapper(int n_exposures, i3_image ** images, i3_image ** psf_images, i3_image ** weights, i3_image * bestI, i3_transform * transforms, i3_options * options, gal_id identifier, i3_flt x, i3_flt y, i3_result * result, int starting_params_only){ #ifdef USE_WCS i3_parameter_set * params_ml; //We run a function to initialize the RNG. i3_init_rng(); //Set verbosity level i3_set_verbosity(options->verbosity); //Create basic information and space for the chosen model (e.g. milestone) i3_model * model = i3_model_create(options->model_name,options); //Set the minimizer method as levmar i3_minimizer_method method = (i3_minimizer_method) options->minimizer_method; //Set up space for the best likelihood, best parameters and best image i3_flt bestL = 0; FILE * output; if (options->save_output){ char output_filename[256]; snprintf(output_filename,256,"%s/%s",options->output_directory,options->output_filename); //Prepare the output file output = fopen(output_filename,"a"); if(!output) I3_FATAL("Cannot open output file for writing",1); } if (options->background_subtract) { for (int i=0; iexposure_background[i] = bg; } } //Scale the image and noise to unit maximum //We take the mean flux across the images. i3_flt mean_flux=0.0; if (options->rescale_stamp) { i3_flt total_flux=0.0; for (int i=0; icircularize_mask){ for (int i=0; iimage,1.0,bestI,-1.0); i3_flt min_residuals = i3_image_min_masked(residuals, data_set->weight); i3_flt max_residuals = i3_image_max_masked(residuals, data_set->weight); // get additional image information i3_flt image_info = 0.0; i3_flt model_min = i3_image_min_masked(bestI, data_set->weight); i3_flt model_max = i3_image_max_masked(bestI, data_set->weight); i3_catalog_row * row = malloc(sizeof(i3_catalog_row)); row->x = x; row->y = y; row->id = identifier; row->catalog_row = identifier; double time_taken = 0.0; //JAZ Doing this in C is problematically inconsistent. // We should do it in python if (options->save_output){ //Save the results save_result_im3shape(options,model,params_ml,bestL,output,row,data_set,min_residuals,max_residuals, model_min, model_max, time_taken, &image_info); if(options->verbosity>=i3_verb_noisy){ printf("im3shape ML parameters: \n"); } } if(options->verbosity>=i3_verb_standard){ save_result_im3shape(options,model,params_ml,bestL,stdout,row,data_set,min_residuals,max_residuals, model_min, model_max, time_taken, &image_info); } copy_result_im3shape_to_struct(options,model,params_ml,bestL,result,identifier,data_set,min_residuals,max_residuals, model_min, model_max, time_taken, &image_info); for (int i=0; in_exposure; i++){ result->exposure_x[i] = data_set->exposure_x[i]; result->exposure_y[i] = data_set->exposure_y[i]; result->exposure_e1[i] = data_set->exposure_e1[i]; result->exposure_e2[i] = data_set->exposure_e2[i]; result->exposure_chi2[i] = data_set->exposure_chi2[i]; result->exposure_residual_stdev[i] = data_set->exposure_residual_stdev[i]; } result->mean_flux = mean_flux; if (options->save_images){ char filename[256]; snprintf(filename,256,"%s/model.%ld.fits",options->output_directory,identifier); i3_image_save_fits(bestI,filename); snprintf(filename,256,"%s/image.%ld.fits",options->output_directory,identifier); i3_image_save_fits(data_set->image,filename); i3_image * psf_stack = i3_create_tiled_image(n_exposures, psf_images); snprintf(filename,256,"%s/psf.%ld.fits",options->output_directory,identifier); i3_image_save_fits(psf_stack,filename); i3_image_destroy(psf_stack); snprintf(filename,256,"%s/weight.%ld.fits",options->output_directory,identifier); i3_image_save_fits(data_set->weight,filename); } //Clean up i3_multiple_exposure_dataset_destroy(data_set); i3_image_destroy(residuals); free(params_ml); if (options->save_output){ fflush(output); fclose(output); } i3_model_destroy(model); free(row); #else I3_FATAL("Tried to use multiple exposures without support for WCS built.", 2); #endif }