function flin ( n, j, l, f, args, x, nf, v, q0, q1 ) !*****************************************************************************80 ! !! FLIN is the function of one variable to be minimized by MINNY. ! ! Discussion: ! ! In fact, what is happening is that the scalar function F(X), ! where X is an N dimensional vector, is being minimized along a ! fixed line. ! ! Modified: ! ! 22 May 2006 ! ! Author: ! ! Original FORTRAN77 version by Richard Brent. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Richard Brent, ! Algorithms for Minimization with Derivatives, ! Prentice Hall, 1973, ! Reprinted by Dover, 2002. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of variables. ! ! Input, integer ( kind = 4 ) J, indicates the kind of search. ! If J is nonzero, then the search is linear in the direction of V(*,J). ! If J is zero, then the search is parabolic, based on X, Q0 and Q1. ! ! Input, real ( kind = 8 ) L, is the parameter determining the particular ! point at which F is to be evaluated. ! For a linear search ( J is nonzero ), L is the size of the step ! along the direction V(*,J). ! For a quadratic search ( J is zero ), L is a parameter which specifies ! a point in the plane of X, Q0 and Q1. ! ! Input, external F, is the name of the function to be minimized. ! The function should have the form ! function f(x,n) ! integer ( kind = 4 ) ( kind = 4 ) n ! real ( kind = 8 ) f ! real ( kind = 8 ) x(n) ! and accepts X and N as input, returning in F the function value. ! ! Input, real ( kind = 8 ) X(N), the base point of the search. ! ! Input/output, integer ( kind = 4 ) NF, the function evaluation counter. ! ! Input, real ( kind = 8 ) V(N,N), a matrix whose columns constitute ! search directions. If J is nonzero, then a linear search is being ! carried out in the direction of V(*,J). ! ! Input, real ( kind = 8 ) Q0(N), Q1(N), two auxiliary points used to ! determine the plane when a quadratic search is performed. ! ! Output, real ( kind = 8 ) FLIN, the value of the function at the ! given point. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ), external :: f integer ( kind = 8 ) :: args !This is really a C pointer real ( kind = 8 ) flin integer ( kind = 4 ) i integer ( kind = 4 ) j real ( kind = 8 ) l integer ( kind = 4 ) nf real ( kind = 8 ) q0(n) real ( kind = 8 ) q1(n) real ( kind = 8 ) qa real ( kind = 8 ) qb real ( kind = 8 ) qc real ( kind = 8 ) qd0 real ( kind = 8 ) qd1 real ( kind = 8 ) qf1 real ( kind = 8 ) t(n) real ( kind = 8 ) v(n,n) real ( kind = 8 ) x(n) common /q/ qa,qb,qc,qd0,qd1,qf1 if ( j /= 0 ) then ! ! The search is linear. ! t(1:n) = x(1:n) + l * v(1:n,j) else ! ! The search is along a parabolic space curve. ! qa = ( l * ( l - qd1 ) ) / ( qd0 * ( qd0 + qd1 ) ) qb = ( ( l + qd0 ) * ( qd1 - l ) ) / ( qd0 * qd1 ) qc = ( l * ( l + qd0 ) ) / ( qd1 * ( qd0 + qd1 ) ) t(1:n) = qa * q0(1:n) + qb * x(1:n) + qc * q1(1:n) end if ! ! The function evaluation counter NF is incremented. ! nf = nf + 1 ! ! Evaluate the function. ! flin = f ( t, args ) return end subroutine minfit ( m, n, tol, ab, q ) !*****************************************************************************80 ! !! MINFIT computes the singular value decomposition of an N by N array. ! ! Discussion: ! ! This is an improved version of the EISPACK routine MINFIT ! restricted to the case M = N and P = 0. ! ! The singular values of the array AB are returned in Q. AB is ! overwritten with the orthogonal matrix V such that u.diag(q) = ab.v, ! where U is another orthogonal matrix. ! ! Modified: ! ! 22 May 2006 ! ! Author: ! ! Original FORTRAN77 version by Richard Brent. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Richard Brent, ! Algorithms for Minimization with Derivatives, ! Prentice Hall, 1973, ! Reprinted by Dover, 2002. ! ! James Wilkinson, Christian Reinsch, ! Handbook for Automatic Computation, ! Volume II, Linear Algebra, Part 2, ! Springer Verlag, 1971. ! ! B Smith, J Boyle, Jack Dongarra, Burton Garbow, Y Ikebe, ! Virginia Klema, Cleve Moler, ! Matrix Eigensystem Routines, EISPACK Guide, ! Lecture Notes in Computer Science, Volume 6, ! Springer Verlag, 1976. ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the leading dimension of AB, which must be ! at least N. ! ! Input, integer ( kind = 4 ) N, the order of the matrix AB. ! ! Input, real ( kind = 8 ) TOL, a tolerance which determines when a vector ! (a column or part of a column of the matrix) may be considered ! "essentially" equal to zero. ! ! Input/output, real ( kind = 8 ) AB(M,N). On input, an N by N array whose ! singular value decomposition is desired. On output, ? ! ! Input, real ( kind = 8 ) Q(N), ? ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) ab(m,n) real ( kind = 8 ) c real ( kind = 8 ) e(n) real ( kind = 8 ) eps real ( kind = 8 ) f real ( kind = 8 ) g real ( kind = 8 ) h integer ( kind = 4 ) i integer ( kind = 4 ) ii integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) kk integer ( kind = 4 ) kt integer ( kind = 4 ), parameter :: kt_max = 30 integer ( kind = 4 ) l integer ( kind = 4 ) l2 integer ( kind = 4 ) ll2 real ( kind = 8 ) q(n) real ( kind = 8 ) s real ( kind = 8 ) temp real ( kind = 8 ) tol real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z ! ! Householder's reduction to bidiagonal form. ! if ( n == 1 ) then q(1) = ab(1,1) ab(1,1) = 1.0D+00 return end if eps = epsilon ( eps ) g = 0.0D+00 x = 0.0D+00 do i = 1, n e(i) = g l = i + 1 s = sum ( ab(1:n,i)**2 ) g = 0.0D+00 if ( tol <= s ) then f = ab(i,i) g = sqrt ( s ) if ( 0.0D+00 <= f ) then g = -g end if h = f * g - s ab(i,i) = f - g do j = l, n f = dot_product ( ab(i:n,i), ab(i:n,j) ) / h ab(i:n,j) = ab(i:n,j) + f * ab(i:n,i) end do end if q(i) = g s = sum ( ab(i,l:n)**2 ) g = 0.0D+00 if ( tol <= s ) then if ( i /= n ) then f = ab(i,i+1) end if g = sqrt ( s ) if ( 0.0D+00 <= f ) then g = - g end if h = f * g - s if ( i /= n ) then ab(i,i+1) = f - g e(l:n) = ab(i,l:n) / h do j = l, n s = dot_product ( ab(j,l:n), ab(i,l:n) ) ab(j,l:n) = ab(j,l:n) + s * e(l:n) end do end if end if y = abs ( q(i) ) + abs ( e(i) ) end do x = max ( x, y ) ! ! Accumulation of right-hand transformations. ! ab(n,n) = 1.0D+00 g = e(n) l = n do ii = 2, n i = n - ii + 1 if ( g /= 0.0D+00 ) then h = ab(i,i+1) * g do j = l, n ab(j,i) = ab(i,j) / h end do do j = l, n s = dot_product ( ab(i,l:n), ab(l:n,j) ) ab(l:n,j) = ab(l:n,j) + s * ab(l:n,i) end do end if ab(i,l:n) = 0.0D+00 ab(l:n,i) = 0.0D+00 ab(i,i) = 1.0D+00 g = e(i) end do l = i ! ! Diagonalization of the bidiagonal form. ! eps = eps * x do kk = 1, n k = n - kk + 1 kt = 0 101 continue kt = kt + 1 if ( kt_max < kt ) then e(k) = 0.0D+00 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MINFIT - Warning!' write ( *, '(a)' ) ' The QR algorithm failed to converge.' end if do ll2 = 1, k l2 = k - ll2 + 1 l = l2 if ( abs ( e(l) ) <= eps ) then go to 120 end if if ( l /= 1 ) then if ( abs ( q(l-1) ) <= eps ) then exit end if end if end do ! ! Cancellation of E(L) if 1 < L. ! c = 0.0D+00 s = 1.0D+00 do i = l, k f = s * e(i) e(i) = c * e(i) if ( abs ( f ) <= eps ) then go to 120 end if g = q(i) ! ! q(i) = h = sqrt(g*g + f*f). ! if ( abs ( f ) < abs ( g ) ) then h = abs ( g ) * sqrt ( 1.0D+00 + ( f / g )**2 ) else if ( f == 0.0D+00 ) then h = 0.0D+00 else h = abs ( f ) * sqrt ( 1.0D+00 + ( g / f )**2 ) end if q(i) = h if ( h == 0.0D+00 ) then g = 1.0D+00 h = 1.0D+00 end if c = g / h s = - f / h end do ! ! Test for convergence. ! 120 continue z = q(k) if ( l == k ) then if ( z < 0.0D+00 ) then q(k) = - z ab(1:n,k) = - ab(1:n,k) end if cycle end if ! ! Shift from bottom 2*2 minor. ! x = q(l) y = q(k-1) g = e(k-1) h = e(k) f = ( ( y - z ) * ( y + z ) + ( g - h ) * ( g + h ) ) / ( 2.0D+00 * h * y ) g = sqrt ( f * f + 1.0D+00 ) if ( f < 0.0D+00 ) then temp = f - g else temp = f + g end if f = ( ( x - z ) * ( x + z ) + h * ( y / temp - h ) ) / x ! ! Next QR transformation. ! c = 1.0D+00 s = 1.0D+00 do i = l+1, k g = e(i) y = q(i) h = s * g g = g * c if ( abs ( f ) < abs ( h ) ) then z = abs ( h ) * sqrt ( 1.0D+00 + ( f / h )**2 ) else if ( f == 0.0D+00 ) then z = 0.0D+00 else z = abs ( f ) * sqrt ( 1.0D+00 + ( h / f )**2 ) end if e(i-1) = z if ( z == 0.0D+00 ) then f = 1.0D+00 z = 1.0D+00 end if c = f / z s = h / z f = x * c + g * s g = - x * s + g * c h = y * s y = y * c do j = 1, n x = ab(j,i-1) z = ab(j,i) ab(j,i-1) = x * c + z * s ab(j,i) = - x * s + z * c end do if ( abs ( f ) < abs ( h ) ) then z = abs ( h ) * sqrt ( 1.0D+00 + ( f / h ) **2 ) else if ( f == 0.0D+00 ) then z = 0.0D+00 else z = abs ( f ) * sqrt ( 1.0D+00 + ( h / f )**2 ) end if q(i-1) = z if ( z == 0.0D+00 ) then f = 1.0D+00 z = 1.0D+00 end if c = f / z s = h / z f = c * g + s * y x = - s * g + c * y end do e(l) = 0.0D+00 e(k) = f q(k) = x go to 101 end do return end subroutine minny ( n, j, nits, d2, x1, f1, fk, f, args, x, t, h, v, q0, q1 ) !*****************************************************************************80 ! !! MINNY minimizes a scalar function of N variables along a line. ! ! Discussion: ! ! MINNY minimizes F along the line from X in the direction V(*,J) unless ! J is less than 1, when a quadratic search is made in the plane ! defined by q0,q1,x. ! ! If fk = .true., then f1 is flin(x1). Otherwise x1 and f1 are ignored ! on entry unless final fx is greater than f1. ! ! Modified: ! ! 22 May 2006 ! ! Author: ! ! Original FORTRAN77 version by Richard Brent. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Richard Brent, ! Algorithms for Minimization with Derivatives, ! Prentice Hall, 1973, ! Reprinted by Dover, 2002. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of variables. ! ! Input, integer ( kind = 4 ) J, indicates the kind of search. ! If J is positive, then the search is linear in the direction of V(*,J). ! If J is zero, then the search is parabolic, based on X, Q0 and Q1. ! ! Input, integer ( kind = 4 ) NITS, the maximum number of times the interval may be ! halved to retry the calculation. ! ! Input, real ( kind = 8 ) D2, is either zero, or an approximation to ! the value of (1/2) times the second derivative of F. ! ! Input/output, real ( kind = 8 ) X1, on entry, an estimate of the ! distance from X to the minimum along V(*,J), or, if J = 0, a curve. ! On output, the distance between X and the minimizer that was found. ! ! Input/output, real ( kind = 8 ) F1, ? ! ! Input, logical FK; if FK is TRUE, then on input F1 contains ! the value FLIN(X1). ! ! Input, external real ( kind = 8 ) F, is the name of the function to ! be minimized. The function should have the form ! function f(x,n) ! integer ( kind = 4 ) n ! real ( kind = 8 ) f ! real ( kind = 8 ) x(n) ! and accepts X and N as input, returning in F the function value. ! ! ?, real ( kind = 8 ) X(N), ? ! ! ?, real ( kind = 8 ) T, ? ! ! ?, real ( kind = 8 ) H, ? ! ! Input, real ( kind = 8 ) V(N,N), a matrix whose columns are direction ! vectors along which the function may be minimized. ! ! ?, real ( kind = 8 ) Q0(N), ? ! ! ?, real ( kind = 8 ) Q1(N), ? ! implicit none real ( kind = 8 ) d1 real ( kind = 8 ) d2 real ( kind = 8 ) dmin logical dz real ( kind = 8 ), external :: f integer ( kind = 8 ) args real ( kind = 8 ) f0 real ( kind = 8 ) f1 real ( kind = 8 ) f2 logical fk real ( kind = 8 ) flin real ( kind = 8 ) fm real ( kind = 8 ) fx real ( kind = 8 ) h integer ( kind = 4 ) i integer ( kind = 4 ) j integer ( kind = 4 ) k real ( kind = 8 ) ldt real ( kind = 8 ) m2 real ( kind = 8 ) m4 real ( kind = 8 ) machep integer ( kind = 4 ) n integer ( kind = 4 ) nf integer ( kind = 4 ) nits integer ( kind = 4 ) nl real ( kind = 8 ) q0(n) real ( kind = 8 ) q1(n) real ( kind = 8 ) qa real ( kind = 8 ) qb real ( kind = 8 ) qc real ( kind = 8 ) qd0 real ( kind = 8 ) qd1 real ( kind = 8 ) qf1 real ( kind = 8 ) s real ( kind = 8 ) sf1 real ( kind = 8 ) small real ( kind = 8 ) sx1 real ( kind = 8 ) t real ( kind = 8 ) t2 real ( kind = 8 ) temp real ( kind = 8 ) v(n,n) real ( kind = 8 ) x(n) real ( kind = 8 ) x1 real ( kind = 8 ) x2 real ( kind = 8 ) xm common /global/ fx,ldt,dmin,nf,nl common /q/ qa,qb,qc,qd0,qd1,qf1 machep = epsilon ( machep ) small = machep**2 m2 = sqrt ( machep ) m4 = sqrt ( m2 ) sf1 = f1 sx1 = x1 k = 0 xm = 0.0D+00 fm = fx f0 = fx dz = ( d2 < machep ) ! ! Find the step size. ! s = sqrt ( sum ( x(1:n)**2 ) ) if ( dz ) then temp = dmin else temp = d2 end if t2 = m4 * sqrt ( abs ( fx ) / temp + s * ldt ) + m2 * ldt s = m4 * s + t if ( dz .and. s < t2 ) then t2 = s end if t2 = max ( t2, small ) t2 = min ( t2, 0.01D+00 * h ) if ( fk .and. f1 <= fm ) then xm = x1 fm = f1 end if if ( .not. fk .or. abs ( x1 ) < t2 ) then if ( 0.0D+00 <= x1 ) then temp = 1.0D+00 else temp = - 1.0D+00 end if x1 = temp * t2 f1 = flin ( n, j, x1, f, args, x, nf, v, q0, q1 ) end if if ( f1 <= fm ) then xm = x1 fm = f1 end if ! ! Evaluate FLIN at another point and estimate the second derivative. ! 4 continue if ( dz ) then if ( f1 <= f0 ) then x2 = 2.0D+00 * x1 else x2 = - x1 end if f2 = flin ( n, j, x2, f, args, x, nf, v, q0, q1 ) if ( f2 <= fm ) then xm = x2 fm = f2 end if d2 = ( x2 * ( f1 - f0 ) - x1 * ( f2 - f0 ) ) / ( ( x1 * x2 ) * ( x1 - x2 ) ) end if ! ! Estimate the first derivative at 0. ! d1 = ( f1 - f0 ) / x1 - x1 * d2 dz = .true. ! ! Predict the minimum. ! if ( d2 <= small ) then if ( 0.0D+00 <= d1 ) then x2 = - h else x2 = h end if else x2 = ( - 0.5D+00 * d1 ) / d2 end if if ( h < abs ( x2 ) ) then if ( x2 <= 0.0D+00 ) then x2 = - h else x2 = h end if end if ! ! Evaluate F at the predicted minimum. ! do f2 = flin ( n, j, x2, f, args, x, nf, v, q0, q1 ) if ( nits <= k .or. f2 <= f0 ) then exit end if k = k + 1 if ( f0 < f1 .and. 0.0D+00 < x1 * x2 ) then go to 4 end if x2 = 0.5D+00 * x2 end do ! ! Increment the one-dimensional search counter. ! nl = nl + 1 if ( fm < f2 ) then x2 = xm else fm = f2 end if ! ! Get a new estimate of the second derivative. ! if ( small < abs ( x2 * ( x2 - x1 ) ) ) then d2 = ( x2 * ( f1 - f0 ) - x1 * ( fm - f0 ) ) / ( ( x1 * x2 ) * ( x1 - x2 ) ) else if ( 0 < k ) then d2 = 0.0D+00 end if end if d2 = max ( d2, small ) x1 = x2 fx = fm if ( sf1 < fx ) then fx = sf1 x1 = sx1 end if ! ! Update X for linear but not parabolic search. ! if ( j /= 0 ) then x(1:n) = x(1:n) + x1 * v(1:n,j) end if return end function praxis ( t0, h0, n, prin, x, f, args, max_iterations, ill_conditioned, badly_scaled, termination_runs ) !*****************************************************************************80 ! !! PRAXIS seeks an N-dimensional minimizer X of a scalar function F(X). ! ! Discussion: ! ! PRAXIS returns the minimum of the function F(X,N) of N variables ! using the principal axis method. The gradient of the function is ! not required. ! ! The approximating quadratic form is ! ! Q(x') = F(x,n) + (1/2) * (x'-x)' * A * (x'-x) ! ! where X is the best estimate of the minimum and ! ! A = inverse(V') * D * inverse(V) ! ! V(*,*) is the matrix of search directions; ! D(*) is the array of second differences. ! ! If F(X) has continuous second derivatives near X0, then A will tend ! to the hessian of F at X0 as X approaches X0. ! ! Modified: ! ! 22 May 2006 ! ! Author: ! ! Original FORTRAN77 version by Richard Brent. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Richard Brent, ! Algorithms for Minimization with Derivatives, ! Prentice Hall, 1973, ! Reprinted by Dover, 2002. ! ! Parameters: ! ! Input, real ( kind = 8 ) T0, is a tolerance. PRAXIS attempts to return ! praxis = f(x) such that if X0 is the true local minimum near X, then ! norm ( x - x0 ) < T0 + sqrt ( EPSILON ( X ) ) * norm ( X ), ! where EPSILON ( X ) is the machine precision for X. ! ! Input, real ( kind = 8 ) H0, is the maximum step size. H0 should be ! set to about the maximum distance from the initial guess to the minimum. ! If H0 is set too large or too small, the initial rate of ! convergence may be slow. ! ! Input, integer ( kind = 4 ) N, the number of variables. ! ! Input, integer ( kind = 4 ) PRIN, controls the printing of intermediate results. ! 0, nothing is printed. ! 1, F is printed after every n+1 or n+2 linear minimizations. ! final X is printed, but intermediate X is printed only ! if N is at most 4. ! 2, the scale factors and the principal values of the approximating ! quadratic form are also printed. ! 3, X is also printed after every few linear minimizations. ! 4, the principal vectors of the approximating quadratic form are ! also printed. ! ! Input/output, real ( kind = 8 ) X(N), is an array containing on entry a ! guess of the point of minimum, on return the estimated point of minimum. ! ! Input, external real ( kind = 8 ) F, is the name of the function to be ! minimized. The function should have the form ! function f(x,n) ! integer ( kind = 4 ) n ! real ( kind = 8 ) f ! real ( kind = 8 ) x(n) ! and accepts X and N as input, returning in F the function value. ! ! Output, real ( kind = 8 ) PRAXIS, the function value at the minimizer. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) d(n) real ( kind = 8 ) df real ( kind = 8 ) dmin real ( kind = 8 ) dn real ( kind = 8 ) dni real ( kind = 8 ), external :: f integer ( kind = 8 ) args real ( kind = 8 ) f1 real ( kind = 8 ) fx real ( kind = 8 ) h real ( kind = 8 ) h0 integer ( kind = 4 ) i integer ( kind = 4 ) ii integer ( kind = 4 ) max_iterations, iteration_number logical illc integer ( kind = 4 ), save :: iseed = 1234567 integer ( kind = 4 ) j integer ( kind = 4 ) k integer ( kind = 4 ) k2 integer ( kind = 4 ) kl integer ( kind = 4 ) kt integer ( kind = 4 ) ktm real ( kind = 8 ) large real ( kind = 8 ) ldfac real ( kind = 8 ) lds real ( kind = 8 ) ldt real ( kind = 8 ) m2 real ( kind = 8 ) m4 real ( kind = 8 ) machep integer ( kind = 4 ) nits integer ( kind = 4 ) nl integer ( kind = 4 ) nf real ( kind = 8 ) praxis integer ( kind = 4 ) prin real ( kind = 8 ) q0(n) real ( kind = 8 ) q1(n) real ( kind = 8 ) qa real ( kind = 8 ) qb real ( kind = 8 ) qc real ( kind = 8 ) qd0 real ( kind = 8 ) qd1 real ( kind = 8 ) qf1 real ( kind = 8 ) r real ( kind = 8 ) s real ( kind = 8 ) scbd real ( kind = 8 ) sf real ( kind = 8 ) sl real ( kind = 8 ) small real ( kind = 8 ) t real ( kind = 8 ) t0 real ( kind = 8 ) t2 real ( kind = 8 ) v(n,n) real ( kind = 8 ) value real ( kind = 8 ) vlarge real ( kind = 8 ) vsmall real ( kind = 8 ) x(n) real ( kind = 8 ) y(n) real ( kind = 8 ) z(n) ! JAZ integer (kind=4) badly_scaled, ill_conditioned, termination_runs common /global/ fx,ldt,dmin,nf,nl common /q/ qa,qb,qc,qd0,qd1,qf1 ! ! Initialization. ! machep = epsilon ( machep ) small = machep * machep vsmall = small * small large = 1.0D+00 / small vlarge = 1.0D+00 / vsmall m2 = sqrt ( machep ) m4 = sqrt ( m2 ) ! ! Heuristic numbers: ! ! If the axes may be badly scaled (which is to be avoided if ! possible), then set SCBD = 10. Otherwise set SCBD = 1. ! ! If the problem is known to be ill-conditioned, initialize ILLC = true. ! ! KTM is the number of iterations without improvement before the ! algorithm terminates. KTM = 4 is very cautious; usually KTM = 1 ! is satisfactory. ! scbd = 1.0D+00 if (badly_scaled .ne. 0) scbd = 1.0D+01 illc = .false. if (ill_conditioned .ne. 0) illc = .true. ktm = termination_runs if ( illc ) then ldfac = 0.1D+00 else ldfac = 0.01D+00 end if kt = 0 nl = 0 nf = 1 fx = f(x,args) qf1 = fx t = small + abs ( t0 ) t2 = t dmin = small h = h0 h = max ( h, 100.0D+00 * t ) ldt = h ! ! The initial set of search directions V is the identity matrix. ! v(1:n,1:n) = 0.0D+00 do i = 1, n v(i,i) = 1.0D+00 end do d(1) = 0.0D+00 qd0 = 0.0D+00 q0(1:n) = x(1:n) q1(1:n) = x(1:n) if ( 0 < prin ) then call print2 ( n, x, prin, fx, nf, nl ) end if ! ! The main loop starts here. ! do iteration_number=1,max_iterations sf = d(1) d(1) = 0.0D+00 s = 0.0D+00 ! ! Minimize along the first direction v(*,1). ! nits = 2 value = fx call minny ( n, 1, nits, d(1), s, value, .false., f, args, x, t, h, & v, q0, q1 ) if ( s <= 0.0D+00 ) then v(1:n,1) = - v(1:n,1) end if if ( sf <= 0.9D+00 * d(1) .or. d(1) <= 0.9D+00 * sf ) then d(2:n) = 0.0D+00 end if ! ! The inner loop starts here. ! do k = 2, n y(1:n) = x(1:n) sf = fx if ( 0 < kt ) then illc = .true. end if 80 continue kl = k df = 0.0D+00 ! ! A random step follows (to avoid resolution valleys). ! PRAXIS assumes that the random number generator returns a random ! number uniformly distributed in (0,1). ! if ( illc ) then do i = 1, n call random_number ( harvest = r ) s = ( 0.1D+00 * ldt + t2 * 10.0D+00**kt ) * ( r - 0.5D+00 ) z(i) = s x(1:n) = x(1:n) + s * v(1:n,i) end do fx = f(x,args) nf = nf + 1 end if ! ! Minimize along the "non-conjugate" directions V(*,K),...,V(*,N). ! do k2 = k, n sl = fx s = 0.0D+00 nits = 2 value = fx call minny ( n, k2, nits, d(k2), s, value, .false., f, args, x, t, & h, v, q0, q1 ) if ( illc ) then s = d(k2) * ( ( s + z(k2) )**2 ) else s = sl - fx end if if ( df <= s ) then df = s kl = k2 end if end do ! ! If there was not much improvement on the first try, set ! ILLC = true and start the inner loop again. ! if ( .not. illc ) then if ( df < abs ( 100.0D+00 * machep * fx ) ) then illc = .true. go to 80 end if end if if ( k == 2 .and. 1 < prin ) then call r8vec_print ( n, d, ' The second difference array' ) end if ! ! Minimize along the "conjugate" directions V(*,1),...,V(*,K-1). ! do k2 = 1, k-1 s = 0.0D+00 nits = 2 value = fx call minny ( n, k2, nits, d(k2), s, value, .false., f, args, x, t, & h, v, q0, q1 ) end do f1 = fx fx = sf lds = 0 do i = 1, n sl = x(i) x(i) = y(i) sl = sl - y(i) y(i) = sl lds = lds + sl**2 end do lds = sqrt ( lds ) ! ! Discard direction V(*,kl). ! ! If no random step was taken, V(*,KL) is the "non-conjugate" ! direction along which the greatest improvement was made. ! if ( small < lds ) then do ii = 1, kl-k i = kl - ii do j = 1, n v(j,i+1) = v(j,i) end do d(i+1) = d(i) end do d(k) = 0 v(1:n,k) = y(1:n) / lds ! ! Minimize along the new "conjugate" direction V(*,k), which is ! the normalized vector: (new x) - (old x). ! nits = 4 value = f1 call minny ( n, k, nits, d(k), lds, value, .true., f, args, x, t, & h, v, q0, q1 ) if ( lds <= 0.0D+00 ) then lds = - lds v(1:n,k) = - v(1:n,k) end if end if ldt = ldfac * ldt ldt = max ( ldt, lds ) if ( 0 < prin ) then call print2 ( n, x, prin, fx, nf, nl ) end if t2 = m2 * sqrt ( sum ( x(1:n)**2 ) ) + t ! ! See whether the length of the step taken since starting the ! inner loop exceeds half the tolerance. ! if ( 0.5D+00 * t2 < ldt ) then kt = -1 end if kt = kt + 1 if ( ktm < kt ) then if (prin>2) then write(*,*) 'Praxis finished because no improvement in ', ktm, & ' iterations' endif go to 400 end if end do ! ! The inner loop ends here. ! ! Try quadratic extrapolation in case we are in a curved valley. ! 171 continue call quad ( n, f, args, x, t, h, v, q0, q1 ) d(1:n) = 1.0D+00 / sqrt ( d(1:n) ) dn = maxval ( d(1:n) ) if ( 3 < prin ) then ! call r8mat_print ( int(v), n, n, n, ' The new direction vectors' ) end if do j = 1, n v(1:n,j) = ( d(j) / dn ) * v(1:n,j) end do ! ! Scale the axes to try to reduce the condition number. ! if ( 1.0D+00 < scbd ) then do i = 1, n z(i) = sqrt ( sum ( v(i,1:n)**2 ) ) z(i) = max ( z(i), m4 ) end do s = minval ( z(1:n) ) do i = 1, n sl = s / z(i) z(i) = 1.0D+00 / sl if ( scbd < z(i) ) then sl = 1.0D+00 / scbd z(i) = scbd end if v(i,1:n) = sl * v(i,1:n) end do end if ! ! Calculate a new set of orthogonal directions before repeating ! the main loop. ! ! Transpose V for MINFIT: ! v(1:n,1:n) = transpose ( v(1:n,1:n) ) ! ! Call MINFIT to find the singular value decomposition of V. ! ! This gives the principal values and principal directions of the ! approximating quadratic form without squaring the condition number. ! call minfit ( n, n, vsmall, v, d ) ! ! Unscale the axes. ! if ( 1.0D+00 < scbd ) then do i = 1, n v(i,1:n) = z(i) * v(i,1:n) end do do i = 1, n s = sqrt ( sum ( v(1:n,i)**2 ) ) d(i) = s * d(i) v(1:n,i) = v(1:n,i) / s end do end if do i = 1, n dni = dn * d(i) if ( large < dni ) then d(i) = vsmall else if ( dni < small ) then d(i) = vlarge else d(i) = 1.0D+00 / dni**2 end if end do ! ! Sort the eigenvalues and eigenvectors. ! call sort ( n, n, d, v ) ! ! Determine the smallest eigenvalue. ! dmin = max ( d(n), small ) ! ! The ratio of the smallest to largest eigenvalue determines whether ! the system is ill conditioned. ! if ( dmin < m2 * d(1) ) then illc = .true. else illc = .false. end if if ( 1 < prin ) then if ( 1.0D+00 < scbd ) then call r8vec_print ( n, z, ' The scale factors' ) end if call r8vec_print ( n, d, ' Principal values of the quadratic form' ) end if if ( 3 < prin ) then ! call r8mat_print ( v, n, n, n, ' The principal axes:' ) end if ! ! The main loop ends here. ! end do if (prin>2) then write(*,*) "Praxis ended on reaching max iterations ", max_iterations endif 400 continue if ( 0 < prin ) then call r8vec_print ( n, x, ' X:' ) end if praxis = fx return end subroutine print2 ( n, x, prin, fx, nf, nl ) !*****************************************************************************80 ! !! PRINT2 prints certain data about the progress of the iteration. ! ! Modified: ! ! 22 May 2006 ! ! Author: ! ! Original FORTRAN77 version by Richard Brent. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Richard Brent, ! Algorithms for Minimization with Derivatives, ! Prentice Hall, 1973, ! Reprinted by Dover, 2002. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of variables. ! ! Input, real ( kind = 8 ) X(N), the current estimate of the minimizer. ! ! Input, integer ( kind = 4 ) PRIN, the user-specifed print level. ! 0, nothing is printed. ! 1, F is printed after every n+1 or n+2 linear minimizations. ! final X is printed, but intermediate X is printed only ! if N is at most 4. ! 2, the scale factors and the principal values of the approximating ! quadratic form are also printed. ! 3, X is also printed after every few linear minimizations. ! 4, the principal vectors of the approximating quadratic form are ! also printed. ! ! Input, real ( kind = 8 ) FX, the smallest value of F(X) found so far. ! ! Input, integer ( kind = 4 ) NF, the number of function evaluations. ! ! Input, integer ( kind = 4 ) NL, the number of linear searches. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) fx integer ( kind = 4 ) nf integer ( kind = 4 ) nl integer ( kind = 4 ) prin real ( kind = 8 ) x(n) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Linear searches ', nl write ( *, '(a,i8)' ) ' Function evaluations ', nf if ( n <= 4 .or. 2 < prin ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'X:' write ( *, '(5g14.6)' ) x(1:n) end if write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) 'FX: ', fx return end subroutine quad ( n, f, args, x, t, h, v, q0, q1 ) !*****************************************************************************80 ! !! QUAD seeks to minimize the scalar function F along a particular curve. ! ! Discussion: ! ! The minimizer to be sought is required to lie on a curve defined ! by Q0, Q1 and X. ! ! Modified: ! ! 22 May 2006 ! ! Author: ! ! Original FORTRAN77 version by Richard Brent. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Richard Brent, ! Algorithms for Minimization with Derivatives, ! Prentice Hall, 1973, ! Reprinted by Dover, 2002. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of variables. ! ! Input, external real ( kind = 8 ) F, is the name of the function to ! be minimized. The function should have the form ! function f(x,n) ! integer ( kind = 4 ) n ! real ( kind = 8 ) f ! real ( kind = 8 ) x(n) ! and accepts X and N as input, returning in F the function value. ! ! Input, real ( kind = 8 ) X(N), ? ! ! Input, real ( kind = 8 ) T, ? ! ! Input, real ( kind = 8 ) H, ? ! ! Input, real ( kind = 8 ) V(N,N), the matrix of search directions. ! ! Input, real ( kind = 8 ) Q0(N), Q1(N), two auxiliary points used to define ! a curve through X. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) dmin real ( kind = 8 ), external :: f integer ( kind = 8 ) args real ( kind = 8 ) fx real ( kind = 8 ) h integer ( kind = 4 ) i real ( kind = 8 ) l real ( kind = 8 ) ldt real ( kind = 8 ) machep integer ( kind = 4 ) nf integer ( kind = 4 ) nits integer ( kind = 4 ) nl real ( kind = 8 ) q0(n) real ( kind = 8 ) q1(n) real ( kind = 8 ) qa real ( kind = 8 ) qb real ( kind = 8 ) qc real ( kind = 8 ) qd0 real ( kind = 8 ) qd1 real ( kind = 8 ) qf1 real ( kind = 8 ) s real ( kind = 8 ) t real ( kind = 8 ) temp real ( kind = 8 ) v(n,n) real ( kind = 8 ) value real ( kind = 8 ) x(n) common /global/ fx,ldt,dmin,nf,nl common /q/ qa,qb,qc,qd0,qd1,qf1 machep = epsilon ( machep ) temp = fx fx = qf1 qf1 = temp call r8vec_swap ( n, x, q1 ) qd1 = sqrt ( sum ( ( x(1:n) - q1(1:n) )**2 ) ) l = qd1 s = 0.0D+00 if ( qd0 <= 0.0D+00 .or. qd1 <= 0.0D+00 .or. nl < 3 * n**2 ) then fx = qf1 qa = 0.0D+00 qb = 0.0D+00 qc = 1.0D+00 else nits = 2 value = qf1 call minny ( n, 0, nits, s, l, value, .true., f, args, x, t, & h, v, q0, q1 ) qa = ( l * ( l - qd1 ) ) / ( qd0 * ( qd0 + qd1 ) ) qb = ( ( l + qd0 ) * ( qd1 - l ) ) / ( qd0 * qd1 ) qc = ( l * ( l + qd0 ) ) / ( qd1 * ( qd0 + qd1 ) ) end if qd0 = qd1 do i = 1, n s = q0(i) q0(i) = x(i) x(i) = ( qa * s + qb * x(i) ) + qc * q1(i) end do return end subroutine r8mat_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_PRINT prints an R8MAT. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Modified: ! ! 12 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the number of rows in A. ! ! Input, integer ( kind = 4 ) N, the number of columns in A. ! ! Input, real ( kind = 8 ) A(M,N), the matrix. ! ! Input, character ( len = * ) TITLE, a title to be printed. ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = * ) title call r8mat_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_PRINT_SOME prints some of an R8MAT. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Modified: ! ! 26 March 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ( kind = 4 ) ILO, JLO, the first row and column to print. ! ! Input, integer ( kind = 4 ) IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ), parameter :: incx = 5 integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer ( kind = 4 ) i integer ( kind = 4 ) i2hi integer ( kind = 4 ) i2lo integer ( kind = 4 ) ihi integer ( kind = 4 ) ilo integer ( kind = 4 ) inc integer ( kind = 4 ) j integer ( kind = 4 ) j2 integer ( kind = 4 ) j2hi integer ( kind = 4 ) j2lo integer ( kind = 4 ) jhi integer ( kind = 4 ) jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i8,6x)' ) j end do write ( *, '('' Col '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 if ( a(i,j) == real ( int ( a(i,j) ), kind = 8 ) ) then write ( ctemp(j2), '(f8.0,6x)' ) a(i,j) else write ( ctemp(j2), '(g14.6)' ) a(i,j) end if end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j), j = 1, inc ) end do end do return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8 values. ! ! Modified: ! ! 22 August 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of components of the vector. ! ! Input, real ( kind = 8 ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a(n) integer ( kind = 4 ) i character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,2x,g16.8)' ) i, a(i) end do return end subroutine r8vec_swap ( n, a1, a2 ) !*****************************************************************************80 ! !! R8VEC_SWAP swaps the entries of two R8VECs. ! ! Discussion: ! ! An R8VEC is a vector of R8 values. ! ! Modified: ! ! 04 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the number of entries in the arrays. ! ! Input/output, real ( kind = 8 ) A1(N), A2(N), the vectors to swap. ! implicit none integer ( kind = 4 ) n real ( kind = 8 ) a1(n) real ( kind = 8 ) a2(n) real ( kind = 8 ) a3(n) a3(1:n) = a1(1:n) a1(1:n) = a2(1:n) a2(1:n) = a3(1:n) return end subroutine sort ( m, n, d, v ) !*****************************************************************************80 ! !! SORT sorts a vector D and adjusts the corresponding columns of a matrix V. ! ! Discussion: ! ! A simple bubble sort is used on D. ! ! In our application, D contains eigenvalues, and the columns of V are ! the corresponding eigenvectors. ! ! Modified: ! ! 25 February 2002 ! ! Author: ! ! Original FORTRAN77 version by Richard Brent. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Richard Brent, ! Algorithms for Minimization with Derivatives, ! Prentice Hall, 1973, ! Reprinted by Dover, 2002. ! ! Parameters: ! ! Input, integer ( kind = 4 ) M, the row dimension of V, which must be at least N. ! ! Input, integer ( kind = 4 ) N, the length of D, and the order of V. ! ! Input/output, real ( kind = 8 ) D(N), the vector to be sorted. ! On output, the entries of D are in descending order. ! ! Input/output, real ( kind = 8 ) V(M,N), an N by N array to be adjusted ! as D is sorted. In particular, if the value that was in D(I) on input is ! moved to D(J) on output, then the input column V(*,I) is moved to ! the output column V(*,J). ! implicit none integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) d(n) integer ( kind = 4 ) i integer ( kind = 4 ) k(1) real ( kind = 8 ) temp real ( kind = 8 ) v(m,n) do i = 1, n-1 ! ! Find K, the index of the largest entry in D(I:N). ! MAXLOC apparently requires its output to be an array. ! k = maxloc ( d(i:n) ) ! ! If I < K, swap D(K) and D(I), and columns K and I of V. ! if ( i < k(1) ) then temp = d(i) d(i) = d(k(1)) d(k(1)) = temp call r8vec_swap ( n, v(1:n,i), v(1:n,k(1)) ) end if end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Modified: ! ! 06 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer ( kind = 4 ) d integer ( kind = 4 ) h integer ( kind = 4 ) m integer ( kind = 4 ) mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer ( kind = 4 ) n integer ( kind = 4 ) s integer ( kind = 4 ) values(8) integer ( kind = 4 ) y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end