{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analyse historical data from the Climate Change Knowledge Portal \n", "\n", "Author: [Giuseppe La Rocca] (mailto: giuseppe.larocca@egi.eu)\n", "\n", "Creation date: 03-Sept-2019\n", "\n", "Last updated: 04-Sept-2019\n", "\n", "---\n", "\n", "## Exercise: \n", "\n", "Calculate the historical precipitation data derived from the Climate Research Unit (Mitchell et at, 2003) aggregated to country and basin levels.\n", "\n", "* Visit the [World Data Catalogue](https://datacatalog.worldbank.org/dataset/climate-change-knowledge-portal-historical-data)\n", "* Click on the \"Data & Resources\" tab\n", "* Download a copy of the \"Climate Chnage Knowledge Portal: Historical Data\" and safe the .xls spreadsheet in your computer\n", "* Upload the .xls spreadsheet in the Notebook user's workspace\n", "\n", "The \"Climate Chnage Knowledge Portal: Historical Data\" spreadsheet contains the following tabs:\n", "\n", "* Country_temperatureCRU: mean monthly and annual temperatures by country for the period 1961-1999. Values are in degrees Celsius.\n", "* Country_precipitationCRU: mean monthly and annual precipitation by country for the period 1961-1999. Values are in millimeters (mm).\n", "\n", "For this exercise the dataset in the Country_temperatureCRU tab will be used.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import necessary libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from pandas import DataFrame\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Provide the ISO_3DIGIT of the country you are interested to analyse" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "ISO_3DIGIT=\"ITA\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load historical datasets from local and create a DataFrame object" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "raw_data = pd.read_excel('./cckp_historical_data_0.xls', sheet_name='Country_temperatureCRU')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show keys() and datasets" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['ISO_3DIGIT', 'Jan_Temp', 'Feb_temp', 'Mar_temp', 'Apr_Temp',\n", " 'May_temp', 'Jun_Temp', 'July_Temp', 'Aug_Temp', 'Sept_temp',\n", " 'Oct_temp', 'Nov_Temp', 'Dec_temp', 'Annual_temp'],\n", " dtype='object')" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Show available keys()\n", "raw_data.keys()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ISO_3DIGITJan_TempFeb_tempMar_tempApr_TempMay_tempJun_TempJuly_TempAug_TempSept_tempOct_tempNov_TempDec_tempAnnual_temp
0AFG0.0730582.1094067.59697413.37023918.21631023.20131525.25853723.76651719.03457512.9926467.0040942.43351712.921455
1AGO22.58223622.68353622.78413922.35358220.73957518.37331517.94617519.90246622.18754823.18159922.78615122.61085821.510933
2ALB2.0230673.2180586.0353179.91786714.44275017.92775020.53891720.47966717.15908312.2657757.5758083.65361711.269800
3ARE18.42752219.42804422.61291326.57843530.62365232.45708733.79613033.55086931.74313028.34321824.06178320.28373926.825609
4ARG20.80353319.89952317.51463414.04628410.6477327.6572567.4213999.01595511.52947614.67465117.54403219.82814814.215225
5ARM-8.663131-6.652077-0.5664106.61972311.43230815.57938519.81930719.28430814.9700007.9220461.618720-4.8725546.374362
6AUS27.78449627.22941025.36869721.87473917.85830514.83290913.95467715.70786118.89074922.45708625.12711626.99410121.506676
7AUT-3.516328-1.9852131.4183785.50907110.11808213.28641815.25566714.97906912.0924387.5507901.733680-2.2098306.186013
8AZE-0.2008810.8037074.97037011.64336416.80146721.72935524.76313324.11113319.83175512.8817627.3257072.03207712.224344
9BDI20.24300020.38800020.42970020.36850020.04610019.37230019.35640020.44300021.15910020.98340020.23910020.16570020.266100
\n", "
" ], "text/plain": [ " ISO_3DIGIT Jan_Temp Feb_temp Mar_temp Apr_Temp May_temp \\\n", "0 AFG 0.073058 2.109406 7.596974 13.370239 18.216310 \n", "1 AGO 22.582236 22.683536 22.784139 22.353582 20.739575 \n", "2 ALB 2.023067 3.218058 6.035317 9.917867 14.442750 \n", "3 ARE 18.427522 19.428044 22.612913 26.578435 30.623652 \n", "4 ARG 20.803533 19.899523 17.514634 14.046284 10.647732 \n", "5 ARM -8.663131 -6.652077 -0.566410 6.619723 11.432308 \n", "6 AUS 27.784496 27.229410 25.368697 21.874739 17.858305 \n", "7 AUT -3.516328 -1.985213 1.418378 5.509071 10.118082 \n", "8 AZE -0.200881 0.803707 4.970370 11.643364 16.801467 \n", "9 BDI 20.243000 20.388000 20.429700 20.368500 20.046100 \n", "\n", " Jun_Temp July_Temp Aug_Temp Sept_temp Oct_temp Nov_Temp \\\n", "0 23.201315 25.258537 23.766517 19.034575 12.992646 7.004094 \n", "1 18.373315 17.946175 19.902466 22.187548 23.181599 22.786151 \n", "2 17.927750 20.538917 20.479667 17.159083 12.265775 7.575808 \n", "3 32.457087 33.796130 33.550869 31.743130 28.343218 24.061783 \n", "4 7.657256 7.421399 9.015955 11.529476 14.674651 17.544032 \n", "5 15.579385 19.819307 19.284308 14.970000 7.922046 1.618720 \n", "6 14.832909 13.954677 15.707861 18.890749 22.457086 25.127116 \n", "7 13.286418 15.255667 14.979069 12.092438 7.550790 1.733680 \n", "8 21.729355 24.763133 24.111133 19.831755 12.881762 7.325707 \n", "9 19.372300 19.356400 20.443000 21.159100 20.983400 20.239100 \n", "\n", " Dec_temp Annual_temp \n", "0 2.433517 12.921455 \n", "1 22.610858 21.510933 \n", "2 3.653617 11.269800 \n", "3 20.283739 26.825609 \n", "4 19.828148 14.215225 \n", "5 -4.872554 6.374362 \n", "6 26.994101 21.506676 \n", "7 -2.209830 6.186013 \n", "8 2.032077 12.224344 \n", "9 20.165700 20.266100 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[:10]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Group datasets based on the \"ISO_3DIGIT\" code and check data structure" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "average_annual_temperature = raw_data.groupby(['ISO_3DIGIT'])\n", "#average_annual_temperature.describe()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ISO_3DIGITJan_TempFeb_tempMar_tempApr_TempMay_tempJun_TempJuly_TempAug_TempSept_tempOct_tempNov_TempDec_tempAnnual_temp
79ITA3.3187924.349366.5220769.61269213.77757917.52469820.30508720.14434417.18581312.8568568.0124464.39841211.500694
\n", "
" ], "text/plain": [ " ISO_3DIGIT Jan_Temp Feb_temp Mar_temp Apr_Temp May_temp Jun_Temp \\\n", "79 ITA 3.318792 4.34936 6.522076 9.612692 13.777579 17.524698 \n", "\n", " July_Temp Aug_Temp Sept_temp Oct_temp Nov_Temp Dec_temp \\\n", "79 20.305087 20.144344 17.185813 12.856856 8.012446 4.398412 \n", "\n", " Annual_temp \n", "79 11.500694 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Filter datasets by ISO_3DIGIT\n", "iso_3digit_average_annual_temperature = average_annual_temperature.get_group(ISO_3DIGIT)\n", "iso_3digit_average_annual_temperature" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create the DataFrame to plot" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Mean monthly and annual temperature for period 1961-1999Temperatures
0Jan3.318792
1Feb4.349360
2Mar6.522076
3Apr9.612692
4May13.777579
5Jun17.524698
6Jul20.305087
7Aug20.144344
8Sept17.185813
9Oct12.856856
10Nov8.012446
11Dec4.398412
\n", "
" ], "text/plain": [ " Mean monthly and annual temperature for period 1961-1999 Temperatures\n", "0 Jan 3.318792\n", "1 Feb 4.349360\n", "2 Mar 6.522076\n", "3 Apr 9.612692\n", "4 May 13.777579\n", "5 Jun 17.524698\n", "6 Jul 20.305087\n", "7 Aug 20.144344\n", "8 Sept 17.185813\n", "9 Oct 12.856856\n", "10 Nov 8.012446\n", "11 Dec 4.398412" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Data = {\n", " 'Mean monthly and annual temperature for period 1961-1999': [\n", " 'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sept','Oct','Nov','Dec'\n", " ],\n", " \n", " 'Temperatures': [\n", " iso_3digit_average_annual_temperature['Jan_Temp'].values[0],\n", " iso_3digit_average_annual_temperature['Feb_temp'].values[0],\n", " iso_3digit_average_annual_temperature['Mar_temp'].values[0],\n", " iso_3digit_average_annual_temperature['Apr_Temp'].values[0],\n", " iso_3digit_average_annual_temperature['May_temp'].values[0],\n", " iso_3digit_average_annual_temperature['Jun_Temp'].values[0],\n", " iso_3digit_average_annual_temperature['July_Temp'].values[0],\n", " iso_3digit_average_annual_temperature['Aug_Temp'].values[0],\n", " iso_3digit_average_annual_temperature['Sept_temp'].values[0],\n", " iso_3digit_average_annual_temperature['Oct_temp'].values[0],\n", " iso_3digit_average_annual_temperature['Nov_Temp'].values[0],\n", " iso_3digit_average_annual_temperature['Dec_temp'].values[0]\n", " ]\n", "}\n", "\n", "data_frame=DataFrame(Data, columns=['Mean monthly and annual temperature for period 1961-1999', 'Temperatures'])\n", "data_frame" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the DataFrame " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHACAYAAABge7OwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDyUlEQVR4nO3deXhU1d0H8O+dfclMksm+se/7viqgFXCpxbqgYhVL1fpKXetSqtRQrYhWxVbfurwVaBWX1oq2rlhlEwQCBBHZDWRPyDqZTGY/7x8hI3dmEhJIMpOZ7+d5eB7m3HtnfjNnJjO/e8/5HUkIIUBERERERBRjFOEOgIiIiIiIKByYDBERERERUUxiMkRERERERDGJyRAREREREcUkJkNERERERBSTmAwREREREVFMYjJEREREREQxickQERERERHFJFW4A+gsPp8PpaWlMJlMkCQp3OEQEREREVGYCCHQ0NCAzMxMKBStX/+JmmSotLQUOTk54Q6DiIiIiIgiRFFREbKzs1vdHjXJkMlkAtD8hM1mc1hjcbvd+OyzzzBnzhyo1eqwxkLdj/0f29j/sY39H9vY/7GN/R9ZrFYrcnJy/DlCa6ImGWoZGmc2myMiGTIYDDCbzfwwxCD2f2xj/8c29n9sY//HNvZ/ZDrT9BkWUCAiIiIiopjEZIiIiIiIiGISkyEiIiIiIopJUTNniIiIiIh6FiEEPB4PvF5vuEM5Z263GyqVCg6HIyqeT6RTKpVQqVTnvKQOkyEiIiIi6nYulwtlZWWw2+3hDqVTCCGQnp6OoqIirnnZTQwGAzIyMqDRaM76PpgMEREREVG38vl8KCgogFKpRGZmJjQaTY9PIHw+H2w2G+Li4tpc5JPOnRACLpcLJ0+eREFBAQYOHHjWrzmTISIiIiLqVi6XCz6fDzk5OTAYDOEOp1P4fD64XC7odDomQ91Ar9dDrVbjxIkT/tf9bLCniIiIiCgsmDTQueiM9w/fgUREREREFJOYDBERERERUUxiMkRERERE1A6SJLX6T6lU4o477gh3iJ1u1qxZuOeee8IdRpdhAQUiIiIionYoKyvz///tt9/G7373Oxw6dAhAcwEFt9sdrtA6zO12Q61WR+3jtRevDBEREXUCu9uLvAorvH1HYmNxLTYVVmNrcQ12lNZid3k99lVacaCqAUdqbCios6PY2oRymwNVdhfqHG40ujxwenzw+kS4nwpRtxNCwOnxhvWfEGf+7KWnp/v/xcfHQ5IkWdvWrVsxceJE6HQ69OvXD8uWLYPH4/EfL0kSXn75Zfz4xz+GwWDA0KFDsW3bNhw9ehSzZs2C0WjE1KlTcezYMf8xubm5GDNmDF5++WV/9b1rrrkGdXV1sthWrVqFoUOHQqfTYciQIfjf//1f/7bjx49DkiS88847mDVrFnQ6HV5//XVUV1fj+uuvR3Z2NgwGA0aOHIk333zTf9zNN9+MjRs34vnnn/dfATt+/DhWr16NhIQE2eOvW7dOVh69Je7XXnsN/fr1g1arhRAC9fX1uO2225Camgqz2YwLL7wQe/fu9R+3d+9eXHDBBTCZTDCbzRg/fjzy8vLO2Ddni1eGiIiIzlGdw42txTVweH2AVg+rywvg7FeglwCoFRJUSgVUkgSVQoJKoYBa2fL/U7dP+79KIZ26rfDvo1ZIUJ76AUMUyVxeHz48VhnWGC7rnwqtSnnWx3/66af45S9/ieeffx4zZ87EsWPHcNtttwEAHn30Uf9+jz32GJ599lk8++yzeOihh7BgwQL069cPS5YsQa9evbBo0SL86le/wscff+w/5ujRo3jnnXfw73//G1arFb/4xS+wePFivPHGGwCAV199FY8++iheeOEFjB07Fnv27MGtt94Ko9GIhQsX+u/noYcewjPPPINVq1ZBq9XC4XBg/PjxeOihh2A2m/Hhhx/ixhtvRL9+/TB58mQ8//zzOHz4MEaMGIHf//73AICUlJR2vyYtcb/77rtQKptf28suuwwWiwUfffQR4uPj8fLLL+NHP/oRDh8+DIvFghtuuAFjx47FX/7yFyiVSuTn53fpFSUmQ0REROfgpN2JbSW18HTiFR0BwOUTcPnOPqE63enJkTxZUrSSXLWebDGxIgpt+fLluOeee7Bw4UIoFAr069cPjz32GB588EFZMvTzn/8c8+fPB9CcnEydOhVLly7F3LlzAQB33303fv7zn8vu2+FwYM2aNcjOzgYA/PnPf8Zll12GZ555Bunp6XjsscfwzDPP4MorrwQA9O3bF9999x1efvllWTJ0zz33+Pdpcf/99/v/f+edd+KTTz7BP/7xD0yePBnx8fHQaDQwGAxIT0/v8Gvicrnw97//3Z9AffHFF9i3bx8qKyuh1WoBAH/84x+xbt06/POf/8Rtt92GwsJCPPDAAxgyZAgAYODAgR1+3I5gMkRERHSWiq1NyCuvQ6SPbPP4BDw+AQeAc7liBQBKCW0mVFqVAjkmHczayJsbQNSVdu3ahZ07d+LZZ5/1t3m9XjgcDtjtdv/isqNGjfJvT0tLAwCMHDlS1uZwOGC1WmE2mwEAvXr18idCADB16lT4fD4cOnQISqUSRUVF+MUvfoFbb73Vv4/H40F8fLwsxgkTJshue71ePPnkk3j77bdRUlICp9MJp9MJo9F4ri8HAKB3796yK0m7du2CzWZDUlKSbL+mpib/0MD77rsPt9xyC/7+97/joosuwjXXXIP+/ft3SjyhdCgZWr58Of71r3/h4MGD0Ov1mDZtGlasWIHBgwf79xFCYNmyZXjllVdQW1uLyZMn48UXX8Tw4cPbvO93330XS5cuxbFjx9C/f3/84Q9/wE9/+tOze1ZERERd7GhNI745aQ3eYG/AmN4ZEJICbp+Ax+fzJyPu0/7v8flObRedelWpq3kF4PX64GwjpzpaY8OULAvSjNruC4wozHw+H37zm9/g+uuvD1oMVKfT+f9/+pCvliutodp8Pl+rj9WyjyRJ/v1effVVTJ48WbZfy9C0FoFJzjPPPIPnnnsOK1euxMiRI2E0GnHPPffA5XK1+VwVCkXQHKtQxSMCH8/n8yEjIwMbNmwI2rdlDlJubi4WLFiADz/8EB9//DEeffRRvPXWW12WF3QoGdq4cSMWL16MiRMnwuPx4OGHH8acOXPw3Xff+Z/sU089hWeffRarV6/GoEGD8Pjjj2P27Nk4dOgQTCZTyPvdtm0brr32Wjz22GP46U9/ivfeew/z58/Hli1bgjqViIgonIQQ+PZkA47UNgZtSzdoUHnoIHJG9O3QGHchBLxCyJIjebLkO5VMBSRX3tNuCwGPt/mYcKdWXgFsK6nBpIxEZJp0Zz6AYp5GqcBl/VPDHsO5GDduHI4ePYoBAwYEJUPnqrCwEKWlpcjMzATQ/NtZoVBg0KBBSEtLQ1ZWFr7//nvccMMNHbrfzZs3Y968efjZz34GoDlZOXLkCIYOHerfR6PRwOuVn/1ISUlBQ0MDGhsb/TlAfn7+GR9v3LhxKC8vh0qlQp8+fVrdb9CgQRg0aBDuvfdeXH/99Vi1alVkJEOffPKJ7PaqVauQmpqKXbt2YcaMGRBCYOXKlXj44Yf94xHXrFmDtLQ0rF27Fr/85S9D3u/KlSsxe/ZsLFmyBACwZMkSbNy4EStXrpRVtCAiIgonnxDYVVaHogZH0LZ+CQYMS9Tj43ZUpAokSdKpQgmdESXg7UhCFXA78IqV9yyeDwD4BLC9tBbjMxLQy6zvnCdGUUuSpHMqXhAJHnnkEfzkJz9Bv379MH/+fCgUCnzzzTfYt28fHn/88XO6b51Oh4ULF+KPf/wjrFYr7rrrLsyfP98/jyc3Nxd33XUXzGYzLrnkEjidTuTl5aG2thb33Xdfq/c7YMAAvPvuu9i6dSsSExPx7LPPory8XJYM9enTB9u3b8fx48cRFxcHi8WCyZMnw2Aw4Le//S3uvPNO7NixA6tXrz7j87joooswdepUXHHFFf7RZaWlpfjoo49wxRVXYPjw4XjggQdw9dVXo2/fviguLsbOnTtx1VVXndPr15ZzmjNUX18PALBYLACAgoIClJeXY86cOf59tFotZs6cia1bt7aaDG3btg333nuvrG3u3LlYuXLluYRHRETUadxeH7aX1qLSHjx8ZHiyCYMsRlkJ3XBSKiQoFRK0nbCChk/Ir1a1lVDVOdyy10cAyCurg9cn0DfBcM6xEEWyuXPn4q233sKzzz6Lp59+Gmq1GkOGDMEtt9xyzvc9YMAAXHnllbj00ktRU1ODSy+9VFY6+5ZbboHBYMDTTz+NBx98EEajESNHjjzjYqlLly5FQUEB5s6dC4PBgNtuuw1XXHGF/zc+0FxgYeHChRg2bBiamppQUFCAPn364PXXX8cDDzyAV155BRdddBFyc3P91fNaI0kSPvroIzz88MNYtGgRTp48ifT0dMyYMQNpaWlQKpWorq7GTTfdhIqKCiQnJ+PKK6/EsmXLzun1azMm0Z6i6iEIITBv3jzU1tZi8+bNAICtW7di+vTpKCkp8V/GA4DbbrsNJ06cwKeffhryvjQaDVavXo0FCxb429auXYuf//zncDqdIY9pmeDVwmq1IicnB1VVVf7JZuHidruxfv16zJ49OyIXl6Kuxf6Pbez/6OTw+LC9vP5UyewfSABGp8Qh59RQsFjvfyEEvqmyobAh+Lt7mMWI/gnRfYUo1vu/IxwOB4qKitCnTx/ZfJqeTAiBhoYGmEymTq26uGzZMrz//vvYvXt3p91ntHA4HDh+/DhycnKC3kdWqxXJycmor69vMzc46ytDv/rVr/DNN99gy5YtQdsC3wBCiDO+KTp6zPLly0NmiZ999pm/Wke4rV+/PtwhUBix/2Mb+z96CLUOvpzBgCagGIDPC6nkKPYdrMe+gGNiuf8FACm1F4RFXob3u5pGHDh0CFJ1KaK9OHcs9397qVQqpKenw2aznXGyfk/T0NDQqffndDrh9XphtYYo2BLjXC4XmpqasGnTpqAr83a7vV33cVbJ0J133okPPvgAmzZtkpX5axm3WF5ejoyMDH97ZWWlv3RgKOnp6SgvL5e1nemYJUuWyMZAtlwZmjNnDq8MUVix/2Mb+z+61Drc2F5uhS+g2ptGIWFypgUJA6bL2tn/zYQQOFRrx5G6Jnl7Sjb6DRiIoRZDVK5XxP5vv5YrQ3FxcbwydAZarRZKpTLsv28jkcPhgF6vx4wZM0JeGWqPDiVDQgjceeedeO+997Bhwwb07dtXtr1v375IT0/H+vXrMXbsWADNGdvGjRuxYsWKVu936tSpWL9+vWze0GeffYZp06a1eoxWq/Uv1nQ6tVodMX+AIikW6n7s/9jG/u/5ymwO7CirhzdgMLlRrcT0bAviNK1/hbL/gZFpGmhVKnxbJT9Lfqy+CT5JwphUc1QmRAD7vz28Xi8kSYJCoej0ymvh0lLiuuV5dZZly5Z16ZyZnkyhUECSpJCfufZ+BjuUDC1evBhr167F+++/D5PJ5L+aEx8fD71eD0mScM899+CJJ57AwIEDMXDgQDzxxBMwGAyy+UA33XQTsrKysHz5cgDNK+3OmDEDK1aswLx58/D+++/j888/DzkEj4iIqKsV1Nmxp6I+qD1Bp8a0rEToenjVq+4yKCkOSoWEvZXyM7QFdXZ4fQLj0uOhiNKEiIh6hg4lQ3/5y18AALNmzZK1r1q1CjfffDMA4MEHH0RTUxPuuOMO/6Krn332mWyNocLCQlnGPG3aNLz11lt45JFHsHTpUvTv3x9vv/021xgiIqJuJYTAwWobDlTbgralGrSYkpUAVZScxe4u/RONUCkk7CqXJ5eF1iZ4fAKTMhOYEBFR2HR4mNyZSJKE3Nxc5ObmtrpPqFVnr776alx99dUdCYeIiKjT+IRAfoUVx+uDJ932Mut5FeMc9I43QKmQsLO0TrYgbKnNgW0ltZiSmQilgq9tLDrLosZEADrn/cPTW0REFPM8PoHtpbUhE6FBFiPGMxE6Z9kmPaZkJSIw56lodOKr4hq4T823oNjQMp+jvRW/iEJpef+cyxy9c1p0lYiIqKdzen3YVlyDGoc7aNvoVDP6JxrDEFV0yojTYXq2BVuLa+E97YxuVZMLW4pqMD3bAo2S52ljgVKpREJCAiorKwEABkPPrzDo8/ngcrngcDiipihEpBJCwG63o7KyEgkJCVAqz34eJ5MhIiKKWY1uD74qroEtYDFVhQRMzEhAlim6FwkNhxSDFuflWLC1uAbu00qW1zrc2FxUjenZFhaoiBEtS7K0JEQ9nRACTU1N/qJi1PUSEhL876OzxWSIiIhiUp3Dja3FNXB45cOz1AoJU7MsSDZowhRZ9EvSa3B+ThK2FNfAddrrX+/0YHNRNc7LToJezYQo2kmShIyMDKSmpsLtDr4y29O43W5s2rQJM2bMYGn1bqBWq8/pilALJkNERBRzKhud+Lq0Fp6AxVT1KgWmZ1tg1vKHTFdL0KkxI8eCLcU1cHh+SIgaXF5sLKrG+dkWGNtYy4mih1Kp7JQfteGmVCrh8Xig0+mYDPUgHNBIREQxpcjahK+Ka4ISIbNGhZm9kpkIdSOzVo2ZOUkwBFwFsrubE6IGpydMkRFRrGAyREREMeNIjQ07y+TlnQEgWa/BjF7BP8qp6xk1KszISUKcRv7aOzw+bCqqRl2IwhZERJ2FyRAREUU9IQS+qbRi38mGoG2ZpyqcsYpZ+BjUSszISUK8Vj4szun1YXNRNWqaXGGKjIiiHf/yExFRVPMJgZ1ldTha2xi0rV+CAZMzE7jgZwTQqZQ4PycJiTr5MEW3T2BLUQ1O2p1hioyIohmTISIiilpurw9fFdeguMERtG14sgmjU80sgRtBNEoFzsuxIFkvr+TnEQJfFdeg3Bbcj0RE54LJEBERRaUmjxebiqpx0i4fYiUBGJ8ej8FJcUyEIpBaocC0bAvSjFpZu08A20pqUdLQFKbIiCgaMRkiIqKo0+DyYOOJatQHVCNTShKmZVvQO94QpsioPVQKCVMyE5EZp5O1CwDbS+tQWG8PT2BEFHWYDBERUVSpbnJh44kq2D1eWbtWqcCMXsFXHCgyKRUSJmUmoJdZH7Qtr7we39cFzwEjIuoormZGRERRo9TmwM7SWngDamcb1UpMz7Ygjot49igKScL49HgoJQkFAVeD8ius8PgEBlniwhQdEUUDfisQEVFUKKizY09FfVB7gk6NaVmJ0Km4hlBPJEkSxqSZoVJIOBJQEfDbkw3w+ASGcv4XEZ0lJkNERNSjCSFwoNqGg9W2oG1pRi0mZyZApeCo8J5MkiSMSDFBpZBwIKCfD1bb4PEJjEwxMSEiog5jMkRERD2WTwjkV9TjeH1whbFeZj3GpcdDwR/IUUGSJAxNbk6IAhfPPVrbCK9PYEwaS6UTUccwGSIioh7J4xPYUVqL8sbgxTgHW+IwLJlDp6LRQEsclAoJ+RVWWXtBvR0eITCeCTARdQCTISIi6nGcHh+2ldSgxuEO2jY61Yz+icYwREXdpV+CESpJwq7yepxeK6PI2gSvz4eJGYlQKpgQEdGZcRA1ERH1KI1uDzYWVgUlQgoJmJyZwEQoRvSKN2BSZiICU55SmxPbSmrh8YmQxxERnY7JEBER9Rh1Djc2nKiGzS1fQ0itkHBedhKyTMFr0lD0yjLpMDU7EYEXgSrtTmwtroHb6wtPYETUYzAZIiKiHqGy0YlNRdVwBvzA1asUmNkrCckGTZgio3BKN+owPdsCVcA8oaomF7YU18DFhIiI2sBkiIiIIl6RtQlfFdcEDX0ya1SY2SsZZq06TJFRJEgxaHFejgXqgEtEtQ43NhVWw+HxtnIkEcU6JkNERBTRjtTYsLOsDoEzQJL1GszolQSDmoupEmDRazAjJwlapfynjdXlwabCatjdTIiIKBiTISIiikhCCHxTaQ1aUwYAsuKah0ZplPwaox/E69SY0SsJepX8fWFze7GpsBo2lydMkRFRpOK3CBERRRyvT2BnWR2O1jYGbeufYMCkzASWTqaQTBoVZvRKgjHgiqHd05wQWZ3B5diJKHYxGSIiooji9vqwtaQGxQ2OoG0jkk0YlWrmYqrUJqO6OSEyaeTLKTq8PmwqqkFtiPWpiCg2MRkiIqKI0eTxYlNRNU7aXbJ2CcCE9HgMSopjIkTtolcpMSPHgnitPCFyeX3YUlSN6iZXK0cSUSxhMkRERBHB6mxeQ6jeKZ/XoZQkTMu2oFe8IUyRUU+lVSlxfk4SLDp5tUG3T2BLUQ0qG51hioyIIgWTISIiCrvqJhc2FVajKaAEslapwIxeSUgzasMUGfV0GqUC5+VYkBKwDpVXCGwtqUGZLXg4JhHFDiZDREQUVqU2BzYXVcMVsIaQUa3ErF5JSNRxDSE6NyqFAtOyLEgPSKp9Avi6pBbFDU1hioyIwo3JEBERhU1BnR1fl9QiIA9Cok6NWb2SYAyYAE90tpQKCVOyEpFl0snaBYAdpXU4UW8PT2BEFFZMhoiIqNsJIfBdVQP2VNQHbUszanF+jgVaFRdTpc6lkCRMykhAL7M+aNuu8nocC1HKnYiiG0+5ERFRt/IJgT0V9ThRHzw0qbdZj7Hp8VCwYhx1EUmSMD49HiqFhO/r5FeD9lZa4fEJDE6KC1N0RNTdmAwREVG38fh82FFah/IQVbwGW+IwLJmls6nrSZKE0almqBQSDtfIrwbtr2qARwgMYxl3opjAZIiIiLqF09O8mGqoBS/HpJrRL9EYhqgoVkmShOHJJqgUEr6rssm2Haq2wesTGJliYkJEFOWYDBERUZdrdHnwVXENbG556WyFBEzKSERmwKR2ou4gSRKGJJmgkhT45qRVtu1obSM8Ph/GpsUzISKKYkyGiIioS9U53PiquAZOr0/WrlZImJZlQVLA+i9E3W2AxQilQgoq6HG8vgken8CEjATOYyOKUkyGiIioy1Q0OrG9pBYeIa+drVcpMD3bArOWawhRZOibYIBKISGvrA6nv1uLGxzwilpMykiEUsGEiCjasLQ2ERF1iUJrE7YW1wQlQmaNCrN6JTMRooiTY9ZjcmYiAnOeMpsT20pq4PH5Qh9IRD0WkyEiIupUQggcrrEFnWEHgGS9BjN6JUGv5hpCFJkyTTpMzbJAGZAQVdpd+Kq4Bm4vEyKiaNLhZGjTpk24/PLLkZmZCUmSsG7dOtl2SZJC/nv66adbvc/Vq1eHPMbhcHT4CRERUfgIIbDvZAO+PdkQtC3LpMP0bAs0Sp6Ho8iWZtRienYSVAGXiKqb3NhcFDz/jYh6rg5/IzU2NmL06NF44YUXQm4vKyuT/XvttdcgSRKuuuqqNu/XbDYHHavTsboQEVFP4fUJ7Cirw9HaxqBt/RMNmJSRwDkX1GMkGzQ4P8cCTcB7ts7pxubCajg83laOJKKepMMFFC655BJccsklrW5PT0+X3X7//fdxwQUXoF+/fm3eryRJQccSEVHPIIRAXlkdSmzBV/RHpJgwMNHI8sTU4yTqNDi/VxK2BFwNsro82FhYjfNzkmDgkE+iHq1Lq8lVVFTgww8/xJo1a864r81mQ+/eveH1ejFmzBg89thjGDt2bKv7O51OOJ0/rGButTavD+B2u+F2By/o151aHj/ccVB4sP9jW6z2/6GaxqBESAIwJiUO2SYtPB5PeALrZrHa/9HMoACmZcZjW2k9HKclRI1uLzYWVmFKRjziTiVE7P/Yxv6PLO3tB0kIETi/td0kScJ7772HK664IuT2p556Ck8++SRKS0vbHPL29ddf4+jRoxg5ciSsViuef/55fPTRR9i7dy8GDhwY8pjc3FwsW7YsqH3t2rUwGAxn9XyIiKjjfCYLRNYAeaPXC0XJEUh2a+iDiHoYodLA12sIoAn4PeNxQVF4CJKrKTyBEVFIdrsdCxYsQH19Pcxmc6v7dWkyNGTIEMyePRt//vOfO3S/Pp8P48aNw4wZM/CnP/0p5D6hrgzl5OSgqqqqzSfcHdxuN9avX4/Zs2dDrWbp2FjD/o9tsdb/dU43viqth++0bxIJwOR0M1JicDHVWOv/WOPw+PB1WT0a3PL5QmqFhCkZ8TAqBPs/hvHzH1msViuSk5PPmAx12TC5zZs349ChQ3j77bc7fKxCocDEiRNx5MiRVvfRarXQarVB7Wq1OmLegJEUC3U/9n9si4X+b/J4sbOiQZYIAcCoVDMy443hCSpCxEL/xyK1GpjRKxlfFVejzvnD0E+3T2BbWT0mpZtP7cf+j2Xs/8jQ3j7osvqmf/3rXzF+/HiMHj26w8cKIZCfn4+MjIwuiIyIiM6V1yfwdUktHB55ieG+8Qb0S+BQZYpeWpUC5+ckIUkv/6Hl8QlsL6uHMIR3dAoRdUyHkyGbzYb8/Hzk5+cDAAoKCpCfn4/CwkL/PlarFf/4xz9wyy23hLyPm266CUuWLPHfXrZsGT799FN8//33yM/Pxy9+8Qvk5+fj9ttv72h4RETUxYQQ2FVeh1qHfHJqsl6D0WlmVo2jqKdWKjA924LUgKGgXgH4sgehvNHZypFEFGk6PEwuLy8PF1xwgf/2fffdBwBYuHAhVq9eDQB46623IITA9ddfH/I+CgsLoVD8kIfV1dXhtttuQ3l5OeLj4zF27Fhs2rQJkyZN6mh4RETUxQ7V2FDcIK8cZ1QrMTkrEQomQhQjVAoFpmZZsKOsFmW205IfhQJ5FQ0wajWw6GNv3hxRT9PhZGjWrFk4U82F2267Dbfddlur2zds2CC7/dxzz+G5557raChERNTNShqa8F2VTdamUkiYmpUIrbLLRl4TRSSlQsLkzETkldXJThAIADvL6nBh72So+bkgimj8hBIRUbvUOdzIK6sPap+UkQCzlpOFKTYpJAkTMxLQO14va290e7G3kqXliSIdkyEiIjojh8eLbSU18AaMDBiZYkJ6XOvryBHFAkmSMDYtHola+YCbQmsTCq1cf4gokjEZIiKiNrVUjmsKqBzX26zHgMTYLqFN1EIhSRiXagK8Hll7fkU9Gl2eVo4ionBjMkRERK0SQmBPRT1qAirHJenVGJMWz8pxRKcxqJWQyo/L2jw+gZ1ldfCd/Rr3RNSFmAwREVGrjtQ2Bg3zMaiUmJyZCKWCiRBRIEVDDbLj5IvC1zjcOFhta+UIIgonJkNERBRSmc2Bb082yNqUUnPlOJ1KGaaoiCLfyGQjjGr5Z+RgtQ1VdleYIiKi1jAZIiKiIPVON3aW1gW1T8xIQLyOleOI2qJSKDAxIwGB1053ltXC5fWFPIaIwoPJEBERyTg9XmwrqYUnYI7D8GQTMk2sHEfUHha9BsOSTbK2Jo8Peyrqz7heIxF1HyZDRETk5xMCX5fWwe72ytpzTDoMsrByHFFHDLIYkazXyNpKGhw4wXLbRBGDyRAREQH4oXJcdZN8XkOiTo1x6QmsHEfUQZIkYUJGAtQBxUb2VlhhY7ltoojAZIiIiAAAx2rtOFEvP2OtVykwNYuV44jOlkGtxLj0eFmbVwjsYLltoojAZIiIiFDe6MA3J62yNqUETMmysHIc0TnKMunRJ94ga6tzuPFdVUMrRxBRd2EyREQU4xqcHuwIUTluQkYCElk5jqhTjEo1waSRn1g4XNOIykZnmCIiIoDJEBFRTHN5fdhaUgOPTz5cZ2hSHLJM+jBFRRR9msttJyJwxGleeR2cHpbbJgoXJkNERDHKJwS2l9aiMaByXJZJhyFJcWGKiih6JejUGB5Qbtvh8WF3RR3LbROFCZMhIqIY9U2lFSft8spxCVo1xrNyHFGXGZBoRKpBXm67zOZEQb09TBERxTYmQ0REMehYbSO+r5P/+NIpmyvHqVg5jqjLtJTb1irlP8H2VVphdbrDFBVR7GIyREQUYyobnfimUl45TiEBU7ISoVezchxRV9OpQpXbBnaW1cHr43A5ou7EZIiIKIbYXB5sL61F4M+t8ekJsOg1IY8hos6XEadD/wR5ue16pwf7WW6bqFsxGSIiihEtlePcAWeeB1vikGNm5Tii7jYixQyzRiVrO1rbiHKbI0wREcUeJkNERDHAJwR2lNbB5pJXjsuM02JYMivHEYWDUiFhYmZCULntXeX1cHi8oQ8iok7FZIiIKAbsO2lFpV2+uGO8VoUJGawcRxRO8Vo1RqaYZW1Orw+7yutZbpuoGzAZIiKKcgV1dhyrlVeO0yoVmJplgUrBrwGicOuXYEC6UStrq2h04lgdy20TdTV+CxIRRbGTdifyK+plbS2V4wysHEcUESRJwvj0+KBy29+etKLewXLbRF2JyRARUZRqbKVy3Ni0eCSxchxRRNGqlJiQkSBr8wlgR1kdPCy3TdRlmAwREUUht9eHbSW1cHnlP6IGJhrRO97QylFEFE5pRi0GJhplbQ0uD/adtLZyBBGdKyZDRERRRgiBnWV1sLo8svZ0oxYjUkxhioqI2mNYsgnxWnm57YI6O0obWG6bqCswGSIiijLfnmxAeaO8cpxZo8JEVo4jinhKhYRJmYlQBnxWd1fUoYnltok6HZMhIqIocqLejiO1jbI2jVLC1KxEqJX8k0/UE5g0KoxKlZfbdnkF8srqWG6bqJPxm5GIKEpUN7mwJ6BynARgSmYijAGr3BNRZOsTr0dmnE7WdtLuCjrZQUTnhskQEVEUsLs9+LqkFoFFp8akxSPZoA19EBFFLEmSMC49HnqV/Kfa/pMNqHW4whQVUfRhMkRE1MN5fM2V45xen6x9QKIRfRNYOY6op9IoFUHltgWAnaV18Ph8IY8hoo5hMkRE1IO1VI6rd8orx6UaWDmOKBqkGLQYbJGX27a5vdhbyXLbRJ2ByRARUQ/2XZUNZTZ55TiTRonJmQlQsHIcUVQYmmxCok4taztR34TihqYwRUQUPZgMERH1UEXWJhyqscna1AoJU7MsrBxHFEUUkoSJGQlQBZzg2FNeD7ub5baJzgW/LYmIeqCaJhd2ldfJ2iQAkzMTEcfKcURRJ06jwpg0ebltt695mCzLbROdPSZDREQ9jN3txbYQleNGp5qRamTlOKJolWPWI9skL7dd3eQKukJMRO3HZIiIqAfx+AS+DlE5rl+CAf0Sja0cRUTRQJIkjE2Lh0GtlLUfqLKhuonltonOBpMhIqIeQgiBXeV1qHO6Ze0pBk3QavVEFJ3USgUmhiq3XVYHt5fltok6iskQEVEPcbDahpIGh6zNqFZicmYiK8cRxZAkvQZDk+JkbXa3F/kst03UYR1OhjZt2oTLL78cmZmZkCQJ69atk22/+eabIUmS7N+UKVPOeL/vvvsuhg0bBq1Wi2HDhuG9997raGhERFGrpKEJB6qDK8dNy7JAw8pxRDFncFIckvTycttF1iYU1tvDFBFRz9Thb9DGxkaMHj0aL7zwQqv7XHzxxSgrK/P/++ijj9q8z23btuHaa6/FjTfeiL179+LGG2/E/PnzsX379o6GR0QUdWodbuSV1QW1T8pMhEnLynFEsail3LZaIb8qnF9pRaPL08pRRBSow9+il1xyCS655JI299FqtUhPT2/3fa5cuRKzZ8/GkiVLAABLlizBxo0bsXLlSrz55psdDZGIKGo0ebz4uqQG3oDKcaNSzUhj5TiimGZQqzAmLR47TztZ4vEJ7Cirw8xeSRw+S9QOXTK2YsOGDUhNTcWgQYNw6623orKyss39t23bhjlz5sja5s6di61bt3ZFeEREPYL3VOW4Jo98UnSfeD36JxjCFBURRZIcsx69zHpZW63DHTSslohC6/TxFZdccgmuueYa9O7dGwUFBVi6dCkuvPBC7Nq1C1pt6LOY5eXlSEtLk7WlpaWhvLy81cdxOp1wOp3+21Zr86RBt9sNt9vd2mHdouXxwx0HhQf7P7Z1Vv8LIbDnpA21Dvn9WHQqDLcY4PFwGEwk4uc/toWr/4db9Ki2O9F42omTQ9U2JGmUQfOKqOvw8x9Z2tsPnZ4MXXvttf7/jxgxAhMmTEDv3r3x4Ycf4sorr2z1OCngUq4QIqjtdMuXL8eyZcuC2j/77DMYDJFxxnT9+vXhDoHCiP0f2861/32WDIjUHHmjy4m6I7vxST4ToUjHz39sC0f/C50R6D0UkH4Y9LO1sBKKgm8h+bzdHk8s4+c/Mtjt7Ssm0uUzbzMyMtC7d28cOXKk1X3S09ODrgJVVlYGXS063ZIlS3Dffff5b1utVuTk5GDOnDkwm8O73obb7cb69esxe/ZsqNU8IxNr2P+xrTP6v7zRiZ0VDbI2pSThvH5pMA/J6owwqYvw8x/bwt3/R+rsOFhz2g9AtRZpY6difKqpzRPM1DnC3f8k1zJq7Ey6PBmqrq5GUVERMjIyWt1n6tSpWL9+Pe69915/22effYZp06a1eoxWqw057E6tVkfMGzCSYqHux/6PbWfb//UON3ZXBo/1n5SZgCSjrjNCo27Az39sC1f/D002o9rhwUm7y99W1uhCaZMHfeIjY9RMLODnPzK0tw86nAzZbDYcPXrUf7ugoAD5+fmwWCywWCzIzc3FVVddhYyMDBw/fhy//e1vkZycjJ/+9Kf+Y2666SZkZWVh+fLlAIC7774bM2bMwIoVKzBv3jy8//77+Pzzz7Fly5aOhkdE1GM5PF5sK6mFV8hLx41IMSEjjokQEbVNkiSMT0/AF8dPwuX74e/I3gorkvQamDQsxU8UqMPV5PLy8jB27FiMHTsWAHDfffdh7Nix+N3vfgelUol9+/Zh3rx5GDRoEBYuXIhBgwZh27ZtMJlM/vsoLCxEWVmZ//a0adPw1ltvYdWqVRg1ahRWr16Nt99+G5MnT+6Ep0hEFPm8PoHtpbWwe+Rj+3uZ9RiYaAxTVETU0xjUSoxNT5C1eYXAztI6+AJOtBDRWVwZmjVrFkQbH6ZPP/30jPexYcOGoLarr74aV199dUfDISLq8YQQyK+oR3VTYOU4NcamxXOsPxF1SJZJh77xBhTU/zB/qM7pxndVDRiREt551USRpkvWGSIiovY7WtuIE9YmWZtepcSUrEQoFUyEiKjjRqaaYdIoZW2HaxpR2ehs5Qii2MRkiIgojMptDuw7GVw5bmpWInQqZStHERG1TaWQMDEjEYHnU/LK6uAMWMiZKJYxGSIiChOr040dZXVB7RMyEpCgYyUiIjo3CTo1hiebZG0Orw+7K+ranPJAFEuYDBERhYHT48O2klp4fPIfJMOS45BlYuU4IuocAxKNSDXIlyIpszlRUNe+BSmJoh2TISKibuYTzZXjGt3yynHZJh0GW+LCFBURRSNJkjAhIx5apfwn3zcnrbA63a0cRRQ7mAwREXWj5spxVlQ1uWTtiTo1xqcnsHIcEXU6nUqJ8enxsjafAHaW1cHr43A5im1MhoiIutH3dXYcr5cPT9GpFKwcR0RdKj1Oh/4JBllbvdODb6usYYqIKDIwGSIi6iYVjU7srZT/8FBKwNQsC/SsHEdEXWxEihlmjXyJyWO1dpTbHGGKiCj8mAwREXWDBpcHO0prg9rHpycgkZXjiKgbKBUSJmYmBJXb3lVeD4fHG/ogoijHZIiIqIu5vD5sK66BO2Bs/pCkOGSb9WGKiohiUbxWjZEpZlmb0+vDrvJ6ltummMRkiIioC/mEwI7SWtgCKsdlxekwNImV44io+/VLMCDdKC+3XdHoxLFaltum2MNkiIioC+2rtKLSLq8cF69VYXxGPCvHEVFYSJKE8ekJ0AWU2/62yoo6B8ttU2xhMkRE1EW+r2vEsYCFDbVKBaZmWaBS8M8vEYWPVqXA+IwEWVtLue3AxaCJohm/jYmIukBVkwt7K+SV4xQSMDUrEQY1K8cRUfilGbUYmGiUtTW4PNhXyXLbFDuYDBERdTKh1iKvogGB51bHpSfAoteEJSYiolCGp5iQoJWX2y6ot6O0geW2KTYwGSIi6kRunw++7EFBleMGWYzoxcpxRBRhFJKEiZmJUAbMYdxdXocmN8ttU/RjMkRE1EmEENhd0QBo5UlPRpwWw5NNYYqKiKhtJo0Ko1Pl5bZdPoG88jqW26aox2SIiKiT7K9qQGWTvBJTvFaFiRkJrBxHRBGtd7wemXE6WdtJuwtHahrDFBFR92AyRETUCcpsDhwO+NHQXDkukZXjiCjiSZKEcenx0Kvkf6/2VzWg1uFq5Siino/f0ERE58ju9mJXWZ2sTQIwOTMRBrUq5DFERJFGo1RgQkC5bQFgR2kdPD5fWGIi6mpMhoiIzoFPCOworYUroGDC8CQjkg2sHEdEPUuKQYvBljhZW6PbG7RUAFG0YDJERHQOvqtqQE3giu3WGvQx60IfQEQU4YYmxyFRp5a1nbA2odjaFKaIiLoOkyEiorNUHmKekEGlgKK8gAUTiKjHUkgSJmUkQKWQ/x3bU1EPu9sTpqiIugaTISKis9Dk9iKvvF7WJgEYn2aC5OPaHETUsxk1KowJKLft9gnsLGO5bYouTIaIiDrIJwR2lNXB5ZVPKB6ZakaCVt3KUUREPUuOWY8ck3zIb3WTGwerbWGKiKjzMRkiIuqgA1U2VDfJS81mxGnRP8EQpoiIiDqfJEkYkxYPg1opaz9YHfw3kKinYjJERNQBFY1OHKqRnxU1qJQYn86FVYko+qiViuaFo09rEwB2ltXB7WW5ber5mAwREbVTk8eLvBDrCU3KTIBGyT+nRBSdkvQaDEmSl9u2u73Ir6hv5QiinoPf3kRE7SCEQF5ZHZwBZ0JHpJhg0XM9ISKKbkOS4pCkl8+JLGpwoLDeHqaIiDoHkyEionY4UG3DSbt8jHy6UYsBicYwRURE1H0kScLEjASoA8pt51daYXOx3Db1XEyGiIjOoLLRGVQ9Sa9SYEIG5wkRUewwqFUYmxYva/OcKrftY7lt6qGYDBERtcHh8WJnyHlCiZwnREQxJ9usR2+zXtZW63DjQBXLbVPPxG9yIqJWtDZPaHiyCUmcJ0REMWp0mhlxAeW2D9XYcNLuDFNERGePyRARUSsOVttQGTBPKM2oxUAL5wkRUexSKRSYmCkvtw0AeSEWoyaKdEyGiIhCOGl34kDAPCGdSoEJXE+IiAiJOg2GJZtkbU0eH/aU10Nw/hD1IEyGiIgCODxe7Cytk7VJACZlJEKr4p9NIiIAGGQxIsUgHzJcYnPgRH1TmCIi6jh+qxMRnaZlnpAjYKjH0GQTkg2cJ0RE1EKSJExIT4AmoNz2Xpbbph6EyRAR0WkO1zQGzRNKNWgwmPOEiIiC6NVKjEtPkLV5hcBuDpejHoLJEBHRKVV2F76rapC16ZRcT4iIqC2ZJh36xhtkbVVNLhzncDnqAZgMEREBcHp82FFWi8DzmBMzE6BTKUMeQ0REzUammqAP+Fv57UkrmjzeMEVE1D5Mhogo5gkhkFdeB4cnYJ5QUhxSDNowRUVE1HOoFAqMTTPL2tw+gb0V1jBFRNQ+HU6GNm3ahMsvvxyZmZmQJAnr1q3zb3O73XjooYcwcuRIGI1GZGZm4qabbkJpaWmb97l69WpIkhT0z+FwdPgJERF11JHaRlQ0yhcLTDFoMCQpLkwRERH1POlxOuSYdLK2UpsDJQ38PUeRq8PJUGNjI0aPHo0XXnghaJvdbsfu3buxdOlS7N69G//6179w+PBh/OQnPznj/ZrNZpSVlcn+6XS6Mx5HRHQuqptc2H9SPk9Iq1RgIucJERF12KjUeGiU8p+XeyvquRgrRSxVRw+45JJLcMkll4TcFh8fj/Xr18va/vznP2PSpEkoLCxEr169Wr1fSZKQnp7e0XCIiM6ay+vDjtK64HlCGZwnRER0NrQqBUalmpFXVudvc3h9+PZkA8alx4cvMKJWdDgZ6qj6+npIkoSEhIQ297PZbOjduze8Xi/GjBmDxx57DGPHjm11f6fTCafzh2EtVmvzmFS32w23290psZ+tlscPdxwUHuz/nkEIgZ0VDUGTewcm6JGoUZx1/7H/Yxv7P7ax/5ul65RI1atR2fTD63C83o4MgxrJenUYI+ta7P/I0t5+kMQ5FIGXJAnvvfcerrjiipDbHQ4HzjvvPAwZMgSvv/56q/fz9ddf4+jRoxg5ciSsViuef/55fPTRR9i7dy8GDhwY8pjc3FwsW7YsqH3t2rUwGAwhjiAi+oEvMQ0irbe80W6FovAgODiOiOjcCJUGvn4jAcVpV9ldDigK9kHi+kPUDex2OxYsWID6+nqYzeZW9+uyZMjtduOaa65BYWEhNmzY0GYQgXw+H8aNG4cZM2bgT3/6U8h9Ql0ZysnJQVVVVYceqyu43W6sX78es2fPhlodvWdAKDT2f+SrdbjxVWm9bHicRiFhZva5D49j/8c29n9sY//LfV/fhP3VjbK2AQl6DI3SRazZ/5HFarUiOTn5jMlQlwyTc7vdmD9/PgoKCvDFF190ODlRKBSYOHEijhw50uo+Wq0WWm1wyVu1Wh0xb8BIioW6H/s/Mrm8Puw+GWo9oUSY9J1XRpv9H9vY/7GN/d9sUJIKpY0u1Dp+GK50rK4JveKNSNBF7+vD/o8M7e2DTl9nqCUROnLkCD7//HMkJSV1+D6EEMjPz0dGRkZnh0dEMUwIgV3ldbC75fOEBluMSDNyPSEios4kSRLGpcfLhh4LALvL6+HjUDmKEB2+MmSz2XD06FH/7YKCAuTn58NisSAzMxNXX301du/ejf/85z/wer0oLy8HAFgsFmg0GgDATTfdhKysLCxfvhwAsGzZMkyZMgUDBw6E1WrFn/70J+Tn5+PFF1/sjOdIRAQAOFZnR5lNvp5Qkl6DocmmMEVERBTd4rVqDE6Kw8Fqm7+tzunGsdpGDLRwLTcKvw4nQ3l5ebjgggv8t++77z4AwMKFC5Gbm4sPPvgAADBmzBjZcV9++SVmzZoFACgsLIRC8cNFqbq6Otx2220oLy9HfHw8xo4di02bNmHSpEkdDY+IKKRahwv7KuUroWuUEiZmJEDB9YSIiLrMYEscShqa0OD64ar8d1UNyIzTwajp8sLGRG3q8Dtw1qxZaKvmQnvqMWzYsEF2+7nnnsNzzz3X0VCIiNrF3cp6QhPSE2BQcz0hIqKupFRIGJeWgI1F1f42rwD2VNRjeraFC1xTWHX6nCEiokgihMDu8no0BswTGmQxIj1OF6aoiIhiS5JBg34J8qVPKu0uFFqbwhQRUTMmQ0QU1b6vs6PE5pC1WXRqDOM8ISKibjU82QS9Sv7T85tKKxwBi18TdScmQ0QUteocbuw7KZ8npFZImJSZyHlCRETdTK1UYExavKzN7RP4JmA+J1F3YjJERFHJ7fVhe2ktfAEThSZkcJ4QEVG4ZMTpkG2SD1EubnCgLOAKPlF3YTJERFFHCIE9FcHzhAYkGpHBeUJERGE1KtUMtUJ+dT6/oh5ury9MEVEsYzJERFHneH0TihvkZxkTdWqMSOE8ISKicNOplBiVapa1NXl82F/VEKaIKJYxGSKiqFLvcGNvZb2srXmeENcTIiKKFL3MeqQaNLK27+vsqLa7whQRxSomQ0QUNTw+H7aXBc8TGp+eAKOaC/sREUUKSZIwNi0eyoBzVLsr6uAN/CNO1IWYDBFRVGieJ2SFzSWfJ9Q/wYBME+cJERFFGqNGFbTMQYPLi0M1tjBFRLGIyRARRYUT1iYUBSzel6BVY0SKuZUjiIgo3PonGpGgU8vaDlXbUO90hykiijVMhoiox6t3urG3Qj5PSKWQMDkzAUoF5wkREUUqhSRhXFo8Tv9LLQDsLq+HEBwuR12PyRAR9Wgenw87SuvgDZonFA+jhvOEiIgiXYJOjYEWo6yt1uHGsTp7mCKiWMJkiIh6tPwKKxpcHllbvwQDskz6MEVEREQdNTTJhLiABbH3n2xAo9vTyhFEnYPJEBH1WCfq7SgMmCcUr1VhJOcJERH1KEqFhLHp8bI2rxDYU27lcDnqUkyGiKhHsjrdyK+wytpUkoTJmYmcJ0RE1AOlGLToE2+QtVXanSgKWESbqDMxGSKiHsfjE6fmCcnPFo5Nj0cc5wkREfVYI1JM0CnlP0+/qayH0+Nt5Qiic8NkiIh6nL2V9bAGzBPqG29AjpnzhIiIejKNUoExafLhci6vwDeV1laOIDo3TIaIqEcptDbhRH3wPKFRqZwnREQUDTJNOmTGyRfLLmpwoNzG4XLU+ZgMEVGP0eDyYE+5fD0hpSRhEucJERFFldFpZqgD/q7vqbDC4/OFKSKKVkyGiKhH8PoEdpTWhpwnZOI8ISKiqKJXKTEioDJok8eL/ScbwhQRRSsmQ0TUI3xTaUW9Uz5PqHe8Hr04T4iIKCr1idcjxaCRtR2rs6OmyRWmiCgaMRkioohXbG1CQb18JXKzRoXRqfGtHEFERD2dJEkYmxaPwFHQu8vr4ePaQ9RJmAwRUUSzuTzYXRFqnlACVJwnREQU1eI0KgxNMsnarC4PDlXbwhQRRRsmQ0QUsbw+ge2ltfD45GcAx6SZYdaqwxQVERF1p4EWI+K18rmhh2pssDrdYYqIogmTISKKWPtOBs8T6mXWo3fACuVERBS9FJKEcekJOH0sgE80D5cTHC5H54jJEBFFpJKGJnxfJ58nZNKoMCaN6wkREcWaRJ0aAxKNsrYahzvoe4Koo5gMEVHEsbk82BW0nhBOzRPiny0iolg0NNkEo1opa9tf1QC72xumiCga8FcFEUWU5vWE6oLmCY1OjUc85wkREcUslaK5utzpPD6B/AoOl6Ozx2SIiCLKtyetqAuYFJtj0qF3PNcTIiKKdalGbdD3QXmjEyUNjjBFRD0dkyEiihglDQ4cCxj/HadWYkx6PCSJZbSJiAgYmWKGVin/Cbu30gqn1xemiKgnYzJERBGh0e3B7vI6WZtCAiZlJkLNeUJERHSKRqnA6IBiOk6vD/sqrWGKiHoy/sIgorDzieZ5Qu6AeUKjUs1I0HGeEBERyWXF6ZARp5W1FVqbUNHoDFNE1FMxGSKisPv2ZANqHfJ5QtkmHfpyPSEiIgpBkiSMSY2HSiEfQr2noh4eH4fLUfsxGSKisCqzOXC0tlHWZlQrMTaN84SIiKh1erUSI1JMsja724sDVbYwRUQ9EZMhIgobu9uLvLI6WZtCAiZnJkKt5J8nIiJqW994A5L0GlnbkdpG1DS5whQR9TT8tUFEYdE8T6g2aJ7QyBTOEyIiovaRJAnj0uMRMFoOeyrq4ePaQ9QOTIaIKCy+q2pATcA8oaw4HfolcJ4QERG1n0mjwpCkOFlbvdODIzWNrRxB9AMmQ0TU7cptDhyuCZ4nNI7rCRER0VkYZImDWaOStR2obkCDyxOmiKinYDJERN3K7vYiL2A9IQnApMwEzhMiIqKzojg1XO50PgHsKa+H4HA5agN/eRBRt/EJgZ1ltXB5A+YJpZqRqNO0chQREdGZWfQaDEg0ytqqmlw4Xt8UpoioJ+hwMrRp0yZcfvnlyMzMhCRJWLdunWy7EAK5ubnIzMyEXq/HrFmzsH///jPe77vvvothw4ZBq9Vi2LBheO+99zoaGhFFuO+qGlDdJJ8nlBmnRX/OEyIiok4wLDkOBrVS1rbvpBVNHm+YIqJI1+FkqLGxEaNHj8YLL7wQcvtTTz2FZ599Fi+88AJ27tyJ9PR0zJ49Gw0NDa3e57Zt23DttdfixhtvxN69e3HjjTdi/vz52L59e0fDI6IIVdHoDJonZFArMS49gfOEiIioU6gUCoxNkw+X8/gE9lbUhykiinQdToYuueQSPP7447jyyiuDtgkhsHLlSjz88MO48sorMWLECKxZswZ2ux1r165t9T5XrlyJ2bNnY8mSJRgyZAiWLFmCH/3oR1i5cmVHwyOiCNTkCV5PSAIwKSMBGs4TIiKiTpRm1KKXWS9rK7U5UdLA4XIUrFN/hRQUFKC8vBxz5szxt2m1WsycORNbt25t9bht27bJjgGAuXPntnkMEfUMPiGws7QOTq9P1j4ixQSLnvOEiIio841MNUMbcLItv8IKV8B3EZHqzLu0X3l5OQAgLS1N1p6WloYTJ060eVyoY1ruLxSn0wmn0+m/bbVaAQButxtut7u1w7pFy+OHOw4KD/a/3MGaRlQFrASeZtCgd5wmKl8j9n9sY//HNvZ/5FAAGJ5kxO7KH6ZpOL0+fFNRh9Eppi55TPZ/ZGlvP3RqMtQicPy/EOKMcwI6eszy5cuxbNmyoPbPPvsMBkNkTMZev359uEOgMGL/A8Jghi9nMHD6Z9ntxMn8XfjYF92TWdn/sY39H9vY/5FBAED2ICAuwd9W2OBE8f58SPbW57KfK/Z/ZLDb7e3ar1OTofT0dADNV3oyMjL87ZWVlUFXfgKPC7wKdKZjlixZgvvuu89/22q1IicnB3PmzIHZbD7bp9Ap3G431q9fj9mzZ0OtVoc1Fup+7P9mDo8Pm0pq4TytjLYEYFrvVFgGzw1fYF2M/R/b2P+xjf0feeweLzYU1cF72lpD+n7DMTM7EUpF5xbvYf9HlpZRY2fSqclQ3759kZ6ejvXr12Ps2LEAAJfLhY0bN2LFihWtHjd16lSsX78e9957r7/ts88+w7Rp01o9RqvVQqvVBrWr1eqIeQNGUizU/WK5/4UQyC+vkSVCADA82YQ0U2Rcue1qsdz/xP6Pdez/yBGvVmNEigl7K3/4Ydzo8eGo1YERKV1z8pz9Hxna2wcdToZsNhuOHj3qv11QUID8/HxYLBb06tUL99xzD5544gkMHDgQAwcOxBNPPAGDwYAFCxb4j7npppuQlZWF5cuXAwDuvvtuzJgxAytWrMC8efPw/vvv4/PPP8eWLVs6Gh4RRYCD1TactAfMEzJqMdBibOUIIiKirtEvwYAiaxNqHD/MITlS04hskx4JOiYtsa7DyVBeXh4uuOAC/+2WoWoLFy7E6tWr8eCDD6KpqQl33HEHamtrMXnyZHz22WcwmX6YrFZYWAiF4ocKH9OmTcNbb72FRx55BEuXLkX//v3x9ttvY/Lkyefy3IgoDE7anThQbZO16VQKTOB6QkREFAaSJGFcejz+e7wKLeMVBIDd5XWY1TsZCn43xbQOJ0OzZs2CEKLV7ZIkITc3F7m5ua3us2HDhqC2q6++GldffXVHwyGiCOLweLGztE7W1ryeUCK0Kq4nRERE4WHWqjE4KQ4HTztZV+f04GhtIwZZ4sIYGYUbf50QUadwe334uqQWjoA1HIYmm5Bs4HpCREQUXoMtcTBp5NcBvqtqgM3lCVNEFAmYDBHROXN7ffiquEY2HhsAUg0aDOY8ISIiigBKRfNwudP5BLCnor7NUU8U3ZgMEdE5aS0R0qkUmJDBeUJERBQ5kvQa9EuQVzU9aXfhhLUpTBFRuDEZIqKz5vb6sCVEIqRVKnBetgU6lTJMkREREYU2PMUEfcA81n2VVjg80b0YOIXGZIiIzorrVCJUGyIROj/HArOW5UqJiCjyqBUKjEmTD5dz+4RsLSKKHUyGiKjDXKeGxjERIiKinigjTodsk07WVtLgQGmDI0wRUbgwGSKiDuEVISIiigajUs3QKOTzWvMr6+EOqIpK0Y3JEBG1m8vrw5aiGtSFSIRm5CQxESIioh5Dp1JiVKpZ1ubw+PDtyYYwRUThwGSIiNqlORGqRp0zoGqcUoEZvZJg0nZ4DWciIqKwyjHrkRqwFl5BvR1VdleYIqLuxmSIiM7I5fVhc1E16pzyhel0KgXO75UUtIgdERFRTyBJEsamxUMZsAzE7oo6eH1ceygWMBkiojY5TyVC9SESoRk5TISIiKhnM2pUGJYcJ2uzubw4WG0LU0TUnZgMEVGrnKeGxrWWCMUxESIioigwINGIRJ183uvhGhvqA+bIUvRhMkREITk9oRMhPRMhIiKKMpIkYVxaPE4fLCcA7K6ohxAcLhfNmAwRURCnx4ctxaETofOZCBERURSK16kxyCIfLlfrcONobWOYIqLuwGSIiGScHm/IOUK8IkRERNFuSFIc4jRKWdt3VTY0ujytHEE9HZMhIvJzeLzYXFQDqyswEVJiRk4SjEyEiIgoiikVEsalJcjavEJgD4fLRS0mQ0QEoDkR2hIiETKolJiRY2EiREREMSHZoEHfeIOsrdLuQpG1KUwRUVdiMkRErV4RMqiUOL8XEyEiIootI1JM0KnkP5O/qbTC4fGGKSLqKkyGiGJcSyLUEJgIqZWY0csCo5qJEBERxRa1UoExqfGyNpdP4JtKa5gioq7CZIgohrWZCOVYYGAiREREMSrTpEOWSSdrK25woMzmCFNE1BWYDBHFqKZTVeMCEyGjurlYAhMhIiKKdaNTzVArJFlbfkU93D5fmCKizsZkiCgG/ZAIycc+G9VKnJ+TBINa2cqRREREsUOnUmJkqlnW1uTxYf/JhjBFRJ2NyRBRjGnyeLG5sBo2JkJERERn1NusR4pBI2v7vs6O6iZXmCKizsRkiCiGNLlPJUJuJkJERETtIUkSxqbFI2C0HHaX18Pr49pDPR2TIaIY0eRuHhoXmAjF+ecIMREiIiIKJU6jwrBkk6ytweXB4RpbmCKizsJkiCgG2N1ebGolETo/Jwl6JkJERERtGpBoRIJWXlzoYLUNVqc7TBFRZ2AyRBTl7KeuCDWGSoR6MREiIiJqD4UkYVx6Ak4fLSfQPFxOCA6X66mYDBFFsVYTIc2pREjFRIiIiKi9EnRqDLQYZW01Dje+r7OHKSI6V0yGiKJUy9C4wETIpGmeI8REiIiIqOOGJplgDBhVsf9kA+webytHUCRjMkQUhexuDzYVVcMelAipcH5OEnRMhIiIiM6KUiFhXHq8rM0jBPadtIGD5XoeJkNEUabR7cGmoppWEiELEyEiIqJzlGLQok+8XtZW2eSGMFnCFBGdLSZDRFGk0e3B5sLgRMjMRIiIiKhTjUgxQ6uU/5QWab3h9PrCFBGdDSZDRFGi0eXBpsKaoDHLZo0K5zERIiIi6lQapQJj0szyRpUa31U3hicgOitMhoiiQKOreWhcU4hEiFeEiIiIukZmnA4ZcVpZW7HNiWJrU5gioo5iMkTUw9lczcUSWkuEtEyEiIiIuoQkSRiTFg+VQpK155XXobrJFaaoqCOYDBH1YDaXB5uLqtHkkY9Pjtc2V41jIkRERNS19ColRqbIh8v5BPB1SS0aXZ4wRUXtxWSIqIf64YpQcCJ0Xk4StCp+vImIiLpDn3g9ept0sjan14etJTVwsaBCROOvJaIeqCURcrSWCCn50SYiIuoukiRhRLIRsNXJ2htcXnxdUguf4ApEkYq/mIh6mIY2EqHzmQgRERGFhUKSoCg9CpNGPkS9qsmF3eX1EEyIIhJ/NRH1IA0uDzYXBidCCacSIQ0TISIiorCRfD5MTjdDF/B9XGhtwqEaW5iiorbwlxNRD+FPhLyBiZAa5zERIiIiigh6lRJTsy1QSvIKc99V2VDEktsRp9N/PfXp0weSJAX9W7x4ccj9N2zYEHL/gwcPdnZoRD1Wg9ODTaESIZ0a5+VYmAgRERFFkESdGpMyE4Lad5XXocrOktuRRNXZd7hz5054vT+sd/Ltt99i9uzZuOaaa9o87tChQzCbfyhLmJKS0tmhEfVIVqcbm4tq4AxIhBJ1akzPZiJEREQUiTLidBiVasY3lVZ/W3PJ7RrM6p2MOE2n/wyns9DpvRCYxDz55JPo378/Zs6c2eZxqampSEhI6OxwiHo0JkJEREQ914BEIxpdHhyrs/vbXD6Br4qbEyIWPQq/Lk1JXS4XXn/9ddx3332QAsZNBho7diwcDgeGDRuGRx55BBdccEGb+zudTjidTv9tq7U563a73XC73ece/Dloefxwx0Hh0Vn93+DyYGtZPVxeefWZBK0Kk9NNkHxeuH3eVo6mcOHnP7ax/2Mb+z+2tdb/QxP1sLncqLD/0N7o9mJbcTWmZMQHzS2iztHez6EkurDO3zvvvIMFCxagsLAQmZmZIfc5dOgQNm3ahPHjx8PpdOLvf/87XnrpJWzYsAEzZsxo9b5zc3OxbNmyoPa1a9fCYDB02nMgCgeh0cPXawigUss3NNmgKDoEiUkQERFRjyEkBXy9hwI6o6xdqq+CVPY9mA51PrvdjgULFqC+vl42FSdQlyZDc+fOhUajwb///e8OHXf55ZdDkiR88MEHre4T6spQTk4Oqqqq2nzC3cHtdmP9+vWYPXs21Gr1mQ+gqHKu/W91ebCttB4un/yjmahVYXKGGWoFL6lHMn7+Yxv7P7ax/2Pbmfrf4fFic0l9UDGkQQl6DLYYg/anc2O1WpGcnHzGZKjLhsmdOHECn3/+Of71r391+NgpU6bg9ddfb3MfrVYLrVYb1K5WqyPmD1AkxULd72z6v97pxrYya1AiZDk1R0jNscU9Bj//sY39H9vY/7Gttf5Xq9WYlq3EpsJqeE67FnG4rgkmnQa94zmyqTO19zPYZb+sVq1ahdTUVFx22WUdPnbPnj3IyMjogqiIIle9o7lYgivgjFGSXo3pOUyEiIiIerqEVkpu7y6vx0m7M/gA6nJdcmXI5/Nh1apVWLhwIVQq+UMsWbIEJSUl+Nvf/gYAWLlyJfr06YPhw4f7Cy68++67ePfdd7siNKKIVOdwY0txdVCxhCS9GtOyLRwaR0REFCXS43QYk2pG/mkltwWAr0tqMatXMkxaltzuTl3yan/++ecoLCzEokWLgraVlZWhsLDQf9vlcuH+++9HSUkJ9Ho9hg8fjg8//BCXXnppV4RGFHFaT4Q0mJ6dCBUTISIioqjSL9EIm9uLo7WN/ja3T+Crkhpc0CsJWpUyjNHFli5JhubMmYPW6jKsXr1advvBBx/Egw8+2BVhEEW8OocbW4qqg+YIJes1mMZEiIiIKGqNTDHB7vag1PbD8Di724ttJbU4PycJSgVrzHUH/tIiCpNahxubmQgRERHFJEmSMCEjEYk6+UT/GocbeeV1rV5YoM7FX1tEYVB76oqQm4kQERFRzFIpJEzNSoQ+YFhcSYMD+6sawhRVbOEvLqJu1loilGLQYFq2hYkQERFRDNGplKdOhMqHxR2uaURBnT1MUcUO/uoi6ka1DleridDULEvQH0IiIiKKfvFaNSZnJiLwV0B+RT0qGllyuysxGSLqJjVNLmwpqglKhFKZCBEREcW8NKMWY9LiZW0CwPbSWlid7vAEFQOYDBF1g5omF7YUMxEiIiKi1vVNMGCQxShr8/gEthbXwuHxhimq6MZkiKiLtSRCnlYSIZbOJCIiohbDk03IMulkbXZPc8ntwN8SdO6YDBF1odYTIS0TISIiIgoiSRImpCfAElByu9bhRl5ZLUtudzImQ0RdpMbhDpkIpRm1mJqVyESIiIiIQlIqJEzJSoRBLS+5XWpz4tuTLLndmZgMEXUBoY/D12XWkInQlEwmQkRERNQ2nUqJaVmJUAf8ZjhS24jvaxvDFFX0YTJE1MlqHG74sgfDK5gIERER0dkza9WYkhWi5HalFeU2R1hiijZMhog6UWWjE1+XWQGl/LJ2OhMhIiIiOgspBi3GpccHte8orUOdgyW3zxWTIaJO4PUJ7Ku0YktxTdAVoXSjFpOZCBEREdFZ6h1vwJCkOFmbRwhsK6lBE0tunxMmQ0TnqN7hxpcnqnAkxPhdJkJERETUGYYmxSEnoOR2k8eHrcU18Ph8YYqq52MyRHSWhBA4XGPDl4VVsLo8QdvTDRpMYdU4IiIi6gSSJGFcegKS9PKS2/VOD3aU1rHk9lliMkR0FuxuLzYX1eDbkw0IXP9MIQFSxQlMSDNBITERIiIios6hVEiYkmmBMaDkdnmjE99UWsMUVc/GZIiog4qsTfjv8ZOoanIFbYvXqnB+VgIUtRWQmAgRERFRJ9OqFJiebYEmYOTJsTo7jrLkdocxGSJqJ5fXhx2ltdhZVgd34OUgAAMTjZjVKxlmjSoM0REREVGsiNOoMCXLgsCR+N9UWlHGktsdwmSIqB0qG534/PhJFDcE/4HRq5Q4P8eCkalmzg8iIiKibpFs0GB8ekJQ+47SOtSy5Ha7MRkiaoPXJ/DNqZLZDk9wpZYcsx4X9UlGikEbhuiIiIgoluWY9RgaUHLbKwS2FdfA7mbJ7fZgMkTUirpTJbNDjb9VKyRMykjAxIwEqJX8GBEREVF4DEmKQy+zXtbm8DaX3HZ7WXL7TDi5gSiAEAJHahqxv6oBoYpUpp66LK0PqORCRERE1N2aS27Hw+72yoo7WV0e7Cirw9SsRFa3bQNPaROdxu72NJfMDpEIKSRgVKoZ07MtTISIiIgoYigkCVOyEhGnkf8+qWh0Ym+FlWsQtYHJEBGarwYV1tvx+fGqVktmX9g7GQMSjSyZTURERBFHo1RgepYF2oDh+wX1LLndFiZDFPNcXh92lNUhr7wenhAlswdZjLigdzLMWnWIo4mIiIgig1GjwpSsxKCS2/tONqCkoSk8QUU4zhmimFbR6MSu8rqQleIMKiUmZMQjmZXiiIiIqIdI0mswIT0BO8rqZO15ZXXQq5Sw6DXhCSxC8coQxSSvT2BvRT2+aqVkdi+zHj/qk8xEiIiIiHqcbLMew5NNsjavALaV1KLR7QlTVJGJyRDFnFqHG1+cqMKxOnvQNo1CwuTMBExgyWwiIiLqwQZZjOgdLy+57fT6sLW4Fi6W3PbjMDmKGUIIHK5pxHetlszWYnxGPPQqVoojIiKink2SJIxNi0eT24tK+w/FoRpcHuworcW0bAtLboNXhihGNLo82FRUHXLtIIUEjE41Y3p2IhMhIiIiihoKScLkzESYNPLrH5V2F/ZU1LPkNpgMUZQTQuBEvR3/PVGF6iZ30PaEUyWz+7NkNhEREUUhtVKBadmJQSW3T9Q34XANS24zGaKo5fT4sL20DrtaKZk92GLELJbMJiIioihnVKswNSsRyoDzvvurGlBsje2S25wzRFGpvNGBXWX1cIaYIGhQKzExPQFJBpaWJCIiothg0WswISMR20trZe155XXQq5VIitGS27wyRFHF4xPIr6jH1uLakIlQ73g9ftQ7mYkQERERxZwskw4jU+Qlt30tJbddsVlym8kQRY3mktkn8X2oktnK5gmE49NZMpuIiIhi14BEI/omGGRtLq8PX5XUxGTJbQ6Tox7PJwQO19hwoMoWsmR2mlGLceksmU1EREQkSRJGp5phd3tR0ej0t9tcXnxdUovzcmKr5DZPkVOP1ujyYFNhNb4LkQgpT5XMnpbFktlERERELRSShEkZCYjXyq+LVDW5sLs8tkpuMxmiHkkIgeP1dvz3eBVqHCFKZuvUuLBPCktmExEREYWgViowNcsCXcD0gUJrEw5W28IUVfdjMkQ9jtPjxdeltdhdXg9PiDMXQ5LiMKtXUtACY0RERET0A4NaianZFigDThwfqLahMEZKbvPXIvUo5TYHdpWHLpltVCsxISMhZktDEhEREXVUok6NSZkJ2FYiL7m9u7wOBpUSyVFegbfTrwzl5uZCkiTZv/T09DaP2bhxI8aPHw+dTod+/frhpZde6uywqIfz+HzYU16PrSWhS2b3idfjR32SmQgRERERdVBGnA6jU82yNp8Avi6pQUOUl9zukitDw4cPx+eff+6/rVS2Pnm9oKAAl156KW699Va8/vrr+Oqrr3DHHXcgJSUFV111VVeERz1MTZMLeWV1sLm9Qdu0SgXGpsUj06QLQ2RERERE0aF/ohE2lwfHTluixOUT2Fpcg1m9kqFVRefsmi5JhlQq1RmvBrV46aWX0KtXL6xcuRIAMHToUOTl5eGPf/wjk6EY5xMCh6ptOFgdumR2+qmS2TpWiiMiIiI6Z6NSzWh0e1F+WsntRrcXX5fW4LzsJCgV0VeUqktSvCNHjiAzMxN9+/bFddddh++//77Vfbdt24Y5c+bI2ubOnYu8vDy43cFVwig22E6VzD4QIhFSShLGpJkxNSuRiRARERFRJ5EkCZMyg0tuVze5sau8LipLbnf6laHJkyfjb3/7GwYNGoSKigo8/vjjmDZtGvbv34+kpKSg/cvLy5GWliZrS0tLg8fjQVVVFTIyMkI+jtPphNP5Q9ZqtVoBAG63O+xJVMvjhzuOnkgIgcIGJ/ZX2+AN8XlL0KowNsWEOI0SHk9kjmFl/8c29n9sY//HNvZ/bIum/p+UZsLmkno4TpunXdzggF5ZjyEWYxgja7/29oMkujjFa2xsRP/+/fHggw/ivvvuC9o+aNAg/PznP8eSJUv8bV999RXOO+88lJWVtTrcLjc3F8uWLQtqX7t2LQwGQ+c9Aeo2QqmCL70vYEoMsVFAqiqBVF0GKeSgOSIiIiLqLEKrh6/XMCBg7r9U9j0U9VVhiqr97HY7FixYgPr6epjN5lb36/LS2kajESNHjsSRI0dCbk9PT0d5ebmsrbKyEiqVKuSVpBZLliyRJVdWqxU5OTmYM2dOm0+4O7jdbqxfvx6zZ8+GWq0Oayw9RXmjE3urbHCFuBxkVCkwNtWExP4pAMZ0e2wdxf6Pbez/2Mb+j23s/9gWjf1faXdhR7lVfho6ox8mjRuD5Aiv4NsyauxMujwZcjqdOHDgAM4///yQ26dOnYp///vfsrbPPvsMEyZMaPONpNVqodVqg9rVanXEvAEjKZZI5fH58E1lA47X20Nu7xtvwMhUE1SKnlfBhP0f29j/sY39H9vY/7Etmvo/K16N0T4gv/KHxEIAyKtowMxeSTBrI/d5trcPOv0X5v3334+NGzeioKAA27dvx9VXXw2r1YqFCxcCaL6ic9NNN/n3v/3223HixAncd999OHDgAF577TX89a9/xf3339/ZoVGEqWly4b/Hq0ImQlqlAlOzEjE2Pb5HJkJERERE0aBfohEDE+XzhNw+ga0ltXB4gpc96Wk6/cpQcXExrr/+elRVVSElJQVTpkzB119/jd69ewMAysrKUFhY6N+/b9+++Oijj3DvvffixRdfRGZmJv70pz+xrHYU8wmBg9U2HGqlZHZGnBZj01gym4iIiCgSjEgxodHtQanth+JldrcXX5fU4vycnl1yu9OTobfeeqvN7atXrw5qmzlzJnbv3t3ZoVAEanB5kFdWh1pHcIUPpSRhVKoZfeL1kKSe+6EiIiIiiiaSJGFCRiI2F1XLfsPVONzIK6vDpMyEHvvbjeOPqFsIIfB9XSO+OF4VMhGy6NT4UZ9k9E0w9NgPExEREVG0UikkTM1KhCFg5E6JzYH9VQ1hiurcMRmiLufweLGtpBb5FVZ4Ayq5SwCGJsVhRq8kxGm6vJ4HEREREZ0lnUqJadmJUAUMiztc04iCutDFsCIdf31SlyptcGB3RT1cpy3a1SJOrcSEjARYIrw0IxERERE1M2vVmJKZiK+Ka2Rzv/Mr6mFQK5FmDK72HMl4ZYi6hNvnw67yOnxdWhsyEeqbYMCFfZKZCBERERH1MKnG5mJXpxMAtpfWot4ZPB0ikjEZok5X3eTCF8ercKK+KWibVqnAtKxEjE1jyWwiIiKinqpPggGDLPKS2x6fwNbinlVym8PkqFO4vD6U2hwoaXCgotEZcp+MOC3GpcVDy5LZRERERD3e8GQTGt1elDQ4/G1NHi+2ltRiRo6lR5z4ZjJEZ83p9aGswYHiBgdO2p0h1wwCAJUkYVSaGb3NLJlNREREFC0kScKE9AQ0uatRc1q1YIfHiyaPDyYNkyGKMk5PyxWgJpy0u1pNgFok6dWYkJ4AIyvFEREREUUd5amS2xsKq9Ho9iJeq8LULAsM6p4xEoi/UOmMnB4vSm3OdidAQPMCqoOT4jDYYuTVICIiIqIoplUpMS3LgoPVDRiTHg91Dxge14LJEIXk8Hj9c4BO2l3tOkYhAelGLbJMeqTHaXvUB4GIiIiIzp5Jq8LEzMRwh9FhTIbIz+HxorTBgRJb+xMgpQSkGXXINumQHqftERPliIiIiIgAJkMxz+FprgBS0uBAVVP7E6B0ow5ZTICIiIiIqAdjMhSDmlquAHUoAZKQHqdtToCMTICIiIiIqOdjMhQjWhKg4gYHqjuQAGWcSoDSjDqoFCyEQERERETRg8lQFGtye1Fyqgx2dZP7zAeACRARERERxQ4mQ1HG7m65AtQkW/yqLapTCVCmSY90oxZKJkBEREREFAOYDEUBu9uLkoYmlDQ42p8AKSRknCqDncYEiIiIiIhiEJOhHsru9qDk1Byg2o4kQHHNVeDSDEyAiIiIiCi2MRnqQRpPJUAlHUiA1KclQKlMgIiIiIiI/JgMRbhG16krQDYH6pgAERERERF1GiZDEajR5UHxqStAdc6OJUDZJh1SjVooJCZARERERERtYTIUIWwtV4AamlDv9LTrGLVCQqbphytATICIiIiIiNqPyVAY2fxXgNqfAGkUEjJMOmSb9EgxaJgAERERERGdJSZD3azB5fGXwW53AqSUkBmnQxYTICIiIiKiTsNkqBs0OD0oPpUAWV3tTYAUyDw1ByiZCRARERERUadjMtRFhEaHw7V2lDW62p0AaU8lQFlMgIiIiIiIuhyToU7U4PKgyNqEYmsTfP1G4VCt/YzHaJWK5iIIcUyAiIiIiIi6E5OhTlRsbcLBatsZ99MqFcg6VQUuWa+BxASIiIiIiKjbMRnqRNkmPQ60kgwxASIiIiIiiixMhjqRSauCWaPyzxHSKhXINjVXgUvSq5kAERERERFFECZDnaxvggFWhwsn9u3G7FnnQ6PRhDskIiIiIiIKgclQJ+ufaITbrUFhk41XgoiIiIiIIpgi3AEQERERERGFA5MhIiIiIiKKSUyGiIiIiIgoJjEZIiIiIiKimMRkiIiIiIiIYhKTISIiIiIiiklMhoiIiIiIKCYxGSIiIiIiopjEZIiIiIiIiGJSpydDy5cvx8SJE2EymZCamoorrrgChw4davOYDRs2QJKkoH8HDx7s7PCIiIiIiIgAdEEytHHjRixevBhff/011q9fD4/Hgzlz5qCxsfGMxx46dAhlZWX+fwMHDuzs8IiIiIiIiAAAqs6+w08++UR2e9WqVUhNTcWuXbswY8aMNo9NTU1FQkJCZ4dEREREREQUpNOToUD19fUAAIvFcsZ9x44dC4fDgWHDhuGRRx7BBRdc0Oq+TqcTTqfTf9tqtQIA3G433G73OUZ9bloeP9xxUHiw/2Mb+z+2sf9jG/s/trH/I0t7+0ESQoiuCkIIgXnz5qG2thabN29udb9Dhw5h06ZNGD9+PJxOJ/7+97/jpZdewoYNG1q9mpSbm4tly5YFtf/f//0fDAZDpz0HIiIiIiLqWex2O2655RbU1dUhPj6+1f26NBlavHgxPvzwQ2zZsgXZ2dkdOvbyyy+HJEn44IMPQm4PvDJUUlKCYcOGnVO8REREREQUPYqKitrMQ7psmNydd96JDz74AJs2bepwIgQAU6ZMweuvv97qdq1WC61W678dFxeHoqIimEwmSJJ0VjF3FqvVipycHBQVFcFsNoc1Fup+7P/Yxv6Pbez/2Mb+j23s/8gihEBDQwMyMzPb3K/TkyEhBO68806899572LBhA/r27XtW97Nnzx5kZGS0e3+FQnFWSVdXMpvN/DDEMPZ/bGP/xzb2f2xj/8c29n/kaGt4XItOT4YWL16MtWvX4v3334fJZEJ5ebk/GL1eDwBYsmQJSkpK8Le//Q0AsHLlSvTp0wfDhw+Hy+XC66+/jnfffRfvvvtuZ4dHREREREQEoAuSob/85S8AgFmzZsnaV61ahZtvvhkAUFZWhsLCQv82l8uF+++/HyUlJdDr9Rg+fDg+/PBDXHrppZ0dHhEREREREYAuGiZ3JqtXr5bdfvDBB/Hggw92dihho9Vq8eijj8rmNFHsYP/HNvZ/bGP/xzb2f2xj//dMXVpNjoiIiIiIKFIpwh0AERERERFRODAZIiIiIiKimMRkiIiIiIiIYhKTISIioi4mSRLWrVsX7jCIiCgAk6GzcPPNN+OKK64IdxjUjW6++WZIkoTbb789aNsdd9wBSZL8peMpurDvKRR+D0S/yspK/PKXv0SvXr2g1WqRnp6OuXPnYtu2bZ32GHwfRb6W74Ann3xS1r5u3TpIkhSmqKgzMRkiaqecnBy89dZbaGpq8rc5HA68+eab6NWr1zndt9vtPtfwqAt1Zd8TUWS66qqrsHfvXqxZswaHDx/GBx98gFmzZqGmpibcoVE30+l0WLFiBWpra8MdCnUBJkPn6JNPPsF5552HhIQEJCUl4cc//jGOHTvm3378+HFIkoR//etfuOCCC2AwGDB69OhOPbNE3WPcuHHo1asX/vWvf/nb/vWvfyEnJwdjx471t7X3PfHOO+9g1qxZ0Ol0eP3117v1uVDHdFbfX3jhhfjVr34lu+/q6mpotVp88cUXXf9EqEv06dMHK1eulLWNGTMGubm5YYmHzl1dXR22bNmCFStW4IILLkDv3r0xadIkLFmyBJdddhkAoL6+HrfddhtSU1NhNptx4YUXYu/evf77yM3NxZgxY/Dyyy8jJycHBoMB11xzDerq6vzb16xZg/fffx+SJEGSJGzYsCEMz5bO5KKLLkJ6ejqWL1/e6j7vvvsuhg8fDq1Wiz59+uCZZ57xb1uyZAmmTJkSdMyoUaPw6KOPdknM1H5Mhs5RY2Mj7rvvPuzcuRP//e9/oVAo8NOf/hQ+n0+238MPP4z7778f+fn5GDRoEK6//np4PJ4wRU1n6+c//zlWrVrlv/3aa69h0aJFsn3a+5546KGHcNddd+HAgQOYO3dut8RPZ68z+v6WW27B2rVr4XQ6/ce88cYbyMzMxAUXXNA9T4SIziguLg5xcXFYt26d7PPaQgiByy67DOXl5fjoo4+wa9cujBs3Dj/60Y9kV46OHj2Kd955B//+97/xySefID8/H4sXLwYA3H///Zg/fz4uvvhilJWVoaysDNOmTeu250jtp1Qq8cQTT+DPf/4ziouLg7bv2rUL8+fPx3XXXYd9+/YhNzcXS5cuxerVqwEAN9xwA7Zv3y47ObZ//37s27cPN9xwQ3c9DWqNoA5buHChmDdvXshtlZWVAoDYt2+fEEKIgoICAUD83//9n3+f/fv3CwDiwIED3REudYKWPj958qTQarWioKBAHD9+XOh0OnHy5Ekxb948sXDhwpDHtvaeWLlyZTc+Azpbndn3DodDWCwW8fbbb/v3GTNmjMjNze2Op0Kd6PTvgd69e4vnnntOtn306NHi0Ucf9d8GIN57771ui4/O3T//+U+RmJgodDqdmDZtmliyZInYu3evEEKI//73v8JsNguHwyE7pn///uLll18WQgjx6KOPCqVSKYqKivzbP/74Y6FQKERZWZkQou3fExQZTu+jKVOmiEWLFgkhhHjvvfdEy8/oBQsWiNmzZ8uOe+CBB8SwYcP8t0eNGiV+//vf+28vWbJETJw4sYujp/bglaFzdOzYMSxYsAD9+vWD2WxG3759AQCFhYWy/UaNGuX/f0ZGBoDmyZnUsyQnJ+Oyyy7DmjVrsGrVKlx22WVITk6W7dPe98SECRO6LW46d53R91qtFj/72c/w2muvAQDy8/Oxd+9eFmAgikBXXXUVSktL8cEHH2Du3LnYsGEDxo0bh9WrV2PXrl2w2WxISkryX0WKi4tDQUGB7Ox/r169kJ2d7b89depU+Hw+HDp0KBxPic7RihUrsGbNGnz33Xey9gMHDmD69OmytunTp+PIkSPwer0Amq8OvfHGGwCaryy++eabvCoUIVThDqCnu/zyy5GTk4NXX30VmZmZ8Pl8GDFiBFwul2w/tVrt/39L9ZHAYVPUMyxatMg/7+PFF18M2t7e94TRaOyWeKnzdEbf33LLLRgzZgyKi4vx2muv4Uc/+hF69+7dbc+BOp9CoYAQQtbGoijRQafTYfbs2Zg9ezZ+97vf4ZZbbsGjjz6KO+64AxkZGSHn+CQkJLR6fy3f/6xC1jPNmDEDc+fOxW9/+1vZSSwhRFCfBv5NWLBgAX7zm99g9+7daGpqQlFREa677rruCJvOgMnQOaiursaBAwfw8ssv4/zzzwcAbNmyJcxRUVe7+OKL/T9uA+f68D0R3Tqj70eOHIkJEybg1Vdfxdq1a/HnP/+56wOnLpWSkoKysjL/bavVioKCgjBGRF1l2LBhWLduHcaNG4fy8nKoVCr06dOn1f0LCwtRWlqKzMxMAMC2bdugUCgwaNAgAIBGo/FfOaCe4cknn8SYMWP8fQg0vy8C/95v3boVgwYNglKpBABkZ2djxowZeOONN9DU1ISLLroIaWlp3Ro7hcZk6BwkJiYiKSkJr7zyCjIyMlBYWIjf/OY34Q6LuphSqcSBAwf8/z8d3xPRrbP6/pZbbsGvfvUrGAwG/PSnP+3yuKlrXXjhhVi9ejUuv/xyJCYmYunSpUHvD+pZqqurcc0112DRokUYNWoUTCYT8vLy8NRTT2HevHm46KKLMHXqVFxxxRVYsWIFBg8ejNLSUnz00Ue44oor/MOgdTodFi5ciD/+8Y+wWq246667MH/+fKSnpwNorkT46aef4tChQ0hKSkJ8fLxsJAlFnpEjR+KGG26Qncj69a9/jYkTJ+Kxxx7Dtddei23btuGFF17A//7v/8qOveGGG5CbmwuXy4Xnnnuuu0OnVnDO0Fnw+XxQqVRQKBR46623sGvXLowYMQL33nsvnn766XCHR93AbDbDbDYHtfM9Ef06o++vv/56qFQqLFiwADqdrqtDpi7Q8j0ANJfNnTFjBn784x/j0ksvxRVXXIH+/fuHOUI6F3FxcZg8eTKee+45zJgxAyNGjMDSpUtx66234oUXXoAkSfjoo48wY8YMLFq0CIMGDcJ1112H48ePy872DxgwAFdeeSUuvfRSzJkzByNGjJD9QL711lsxePBgTJgwASkpKfjqq6/C8XSpgx577DHZMLhx48bhnXfewVtvvYURI0bgd7/7HX7/+98HzQe95pprUF1dDbvdzsV2I4gkAgc10hldfPHFGDBgAF544YVwh0JEPVBRURH69OmDnTt3Yty4ceEOh84CvwfoTHJzc7Fu3Trk5+eHOxQiagOvDHVAbW0tPvzwQ2zYsAEXXXRRuMMhoh7G7XajsLAQDz30EKZMmcJEqAfi9wARUXThnKEOWLRoEXbu3Ilf//rXmDdvXrjDIaIe5quvvsIFF1yAQYMG4Z///Ge4w6GzwO8BIqLowmFyREREREQUkzhMjoiIiIiIYhKTISIiIiIiiklMhoiIiIiIKCYxGSIiIiIiopjEZIiIeqwNGzZAkiTU1dW1uk9ubi7GjBnTbTF1xM033xxVC+/16dMHK1euDHcYdIoQArfddhssFgskSepR691IkoR169ad031E2+eLiLoGkyGiCHDzzTdDkiTcfvvtQdvuuOMOSJIUtJJ1rJk1axbuueeecIdB5yCWfpyuXr0aCQkJYY3hk08+werVq/Gf//wHZWVlGDFiRFjj6YiysjJccsklXfoYDocDN998M0aOHAmVStXqe/PFF1/E0KFDodfrMXjwYPztb38L2qeurg6LFy9GRkYGdDodhg4dio8++si/fdOmTbj88suRmZnZoUTvlVdewaxZs2A2m1s98bN7927Mnj0bCQkJSEpKwm233QabzSbb57///S+mTZsGk8mEjIwMPPTQQ/B4PLJ93nnnHYwZMwYGgwG9e/fG008/3a4YiXo6JkNEESInJwdvvfUWmpqa/G0OhwNvvvkmevXqFcbIiKiFy+Xq9sd0u91nddyxY8eQkZGBadOmIT09HSpVx5cWFEIE/WjuSi2vb3p6OrRabZc+ltfrhV6vx1133dXqArp/+ctfsGTJEuTm5mL//v1YtmwZFi9ejH//+9+ymGfPno3jx4/jn//8Jw4dOoRXX30VWVlZ/n0aGxsxevRovPDCCx2K0W634+KLL8Zvf/vbkNtLS0tx0UUXYcCAAdi+fTs++eQT7N+/X3by7JtvvsGll16Kiy++GHv27MFbb72FDz74AL/5zW/8+3z88ce44YYbcPvtt+Pbb7/F//7v/+LZZ5/tcLxEPZIgorBbuHChmDdvnhg5cqR4/fXX/e1vvPGGGDlypJg3b55YuHChv93n84kVK1aIvn37Cp1OJ0aNGiX+8Y9/+Ld7PB6xaNEi0adPH6HT6cSgQYPEypUrQz7m008/LdLT04XFYhF33HGHcLlcrcb56KOPitGjR4u//vWvIicnRxiNRnH77bcLj8cjVqxYIdLS0kRKSop4/PHHZcedOHFC/OQnPxFGo1GYTCZxzTXXiPLy8qD7/dvf/iZ69+4tzGazuPbaa4XVavXHCkD2r6CgQHz55ZcCgPj888/F+PHjhV6vF1OnThUHDx4Mum8hhNi4caNQqVSirKxMFt99990nzj///Faf9zPPPCNGjBghDAaDyM7OFv/zP/8jGhoa/NtXrVol4uPjxSeffCKGDBkijEajmDt3rigtLZX1yb333ivi4+OFxWIRDzzwgLjpppvEvHnzWn3cqqoqcd1114msrCyh1+vFiBEjxNq1a2X7zJw5U9x5553igQceEImJiSItLU08+uijsn0AiFdffVVcccUVQq/XiwEDBoj3338/KP7Tvffee+L0r4ijR4+Kn/zkJyI1NVUYjUYxYcIEsX79etkxvXv3Fs8991zI5/Loo48G9eGXX34phBCiuLhYzJ8/XyQkJAiLxSJ+8pOfiIKCAv+xLe/VP/zhDyI1NVXEx8eL3Nxc4Xa7xf333y8SExNFVlaW+Otf/+o/pqCgQAAQb775ppg6darQarVi2LBh/sdssX//fnHJJZcIo9EoUlNTxc9+9jNx8uRJ2eu7ePFice+994qkpCQxY8YMIUTb74mW9+Xp/1r6BIB47733ZDHEx8eLVatWyeJ+++23xcyZM4VWqxWvvfaaEEKI1157TQwZMkRotVoxePBg8eKLL4Z8rVtes9Mfv3fv3kIIIRwOh7jzzjtFSkqK0Gq1Yvr06WLHjh3+41pi/+STT8T48eOFWq0WX3zxRdD9d/XrG/g6ffPNN+KCCy4QOp1OWCwWceutt8o+g2fz+Qp8vULtO3XqVHH//ffL2u6++24xffp0/+2//OUvol+/fm3+7TxdqPfAmbT0S21traz95ZdfFqmpqcLr9frb9uzZIwCII0eOCCGEWLJkiZgwYYLsuPfee0/odDr/39jrr79eXH311bJ9nnvuOZGdnS18Pl+HYiXqaXhliCiC/PznP8eqVav8t1977TUsWrQoaL9HHnkEq1atwl/+8hfs378f9957L372s59h48aNAACfz4fs7Gy88847+O677/C73/0Ov/3tb/HOO+/I7ufLL7/EsWPH8OWXX2LNmjVYvXo1Vq9e3WaMx44dw8cff4xPPvkEb775Jl577TVcdtllKC4uxsaNG7FixQo88sgj+PrrrwE0n1m+4oorUFNTg40bN2L9+vU4duwYrr322qD7XbduHf7zn//gP//5DzZu3Ignn3wSAPD8889j6tSpuPXWW1FWVoaysjLk5OT4j3344YfxzDPPIC8vDyqVKuRrBgAzZsxAv3798Pe//93f5vF48Prrr+PnP/95q89ZoVDgT3/6E7799lusWbMGX3zxBR588EHZPna7HX/84x/x97//HZs2bUJhYSHuv/9+//ZnnnkGr732Gv76179iy5YtqKmpwXvvvdfma+1wODB+/Hj85z//wbfffovbbrsNN954I7Zv3y7bb82aNTAajdi+fTueeuop/P73v8f69etl+yxbtgzz58/3nyW+4YYbUFNT0+bjn85ms+HSSy/F559/jj179mDu3Lm4/PLLUVhY2K7j77//fsyfPx8XX3yxvw+nTZsGu92OCy64AHFxcdi0aRO2bNmCuLg4XHzxxbKrMF988QVKS0uxadMmPPvss8jNzcWPf/xjJCYmYvv27bj99ttx++23o6ioSPa4DzzwAH79619jz549mDZtGn7yk5+guroaQPNQrJkzZ2LMmDHIy8vDJ598goqKCsyfPz/o9VWpVPjqq6/w8ssvA2j7PTFt2jSsXLkSZrPZ/1xPfy+0x0MPPYS77roLBw4cwNy5c/Hqq6/i4Ycfxh/+8AccOHAATzzxBJYuXYo1a9aEPP7555/H73//e2RnZ6OsrAw7d+4EADz44IN49913sWbNGuzevRsDBgzA3Llzg94LDz74IJYvX44DBw5g1KhRrcbZVa/v6VqujiQmJmLnzp34xz/+gc8//xy/+tWv/PuczeerPZxOJ3Q6naxNr9djx44d/it2H3zwAaZOnYrFixcjLS0NI0aMwBNPPAGv13vOj9+e+DQaDRSKH37O6fV6AMCWLVvafA4OhwO7du1qc5/i4mKcOHGiK58CUfiFOxsjoh/OSp48eVJotVpRUFAgjh8/LnQ6nTh58qTsypDNZhM6nU5s3bpVdh+/+MUvxPXXX9/qY9xxxx3iqquukj1m7969hcfj8bddc8014tprr231Ph599FFhMBj8ZxOFEGLu3LmiT58+sjOTgwcPFsuXLxdCCPHZZ58JpVIpCgsL/dv3798vAPjPSIe63wceeEBMnjzZf3vmzJni7rvvlsVz+pWhFh9++KEAIJqamvz33XJlSAghVqxYIYYOHeq/vW7dOhEXFydsNlurzzvQO++8I5KSkvy3V61aJQCIo0eP+ttefPFFkZaW5r+dkZEhnnzySf9tt9stsrOz233musWll14qfv3rX/tvz5w5U5x33nmyfSZOnCgeeugh/20A4pFHHvHfttlsQpIk8fHHH/vjP9OVoVCGDRsm/vznP/tvt3VlSIjQZ9//+te/isGDB8vOPjudTqHX68Wnn37qP653795B77HTr+Z5PB5hNBrFm2++KYT44cpFqNd8xYoVQgghli5dKubMmSOLp6ioSAAQhw4dEkI0v75jxoxp83UQIvR7IvA1FaL9V4YCr+Tm5OQEXRV87LHHxNSpU1uN6bnnnvNfERKiud/VarV44403/G0ul0tkZmaKp556Sgjxw2dq3bp1bT3dLn99T3+dXnnlFZGYmCj7jH744YdCoVD4rzCf6+ertStDS5YsEenp6SIvL0/4fD6xc+dOkZqaKgD4r/wOHjxYaLVasWjRIpGXlyfefPNNYbFYxLJly0I+Vqj3wJm0dmXo22+/FSqVSjz11FPC6XSKmpoaceWVVwoA4oknnhBCCPHpp58KhUIh1q5dKzwejyguLhbnnXeeAOB/T7388svCYDCIzz//XHi9XnHo0CExZMgQASDou4Yo2vDKEFEESU5OxmWXXYY1a9Zg1apVuOyyy5CcnCzb57vvvoPD4cDs2bMRFxfn//e3v/0Nx44d8+/30ksvYcKECUhJSUFcXBxeffXVoLP4w4cPh1Kp9N/OyMhAZWVlmzH26dMHJpPJfzstLQ3Dhg2TnZlMS0vz38+BAweQk5Mju5IzbNgwJCQk4MCBA63eb3tiaXH6meuMjAwAaPXYm2++GUePHvVfuXrttdcwf/58GI3GVu//yy+/xOzZs5GVlQWTyYSbbroJ1dXVaGxs9O9jMBjQv3//kPHX19ejrKwMU6dO9W9XqVSYMGFCm8/L6/XiD3/4A0aNGoWkpCTExcXhs88+C+rHwDP3oV670/cxGo0wmUztfn2B5jkPDz74oL/v4uLicPDgwXZfGWrNrl27cPToUZhMJv972WKxwOFwyN7Pw4cPD3qPjRw50n9bqVQiKSkp6DmFes1b3ne7du3Cl19+KfscDRkyBABkjx2qn9rznjgXpz/myZMnUVRUhF/84heyWB9//HFZnGdy7NgxuN1uTJ8+3d+mVqsxadIk2Wcx8PHb0lWv7+kOHDiA0aNHyz6j06dPh8/nw6FDh87689UeS5cuxSWXXIIpU6ZArVZj3rx5/vk4LX87fT4fUlNT8corr2D8+PG47rrr8PDDD+Mvf/lLux/niSeekL1O7f1cDR8+HGvWrMEzzzwDg8GA9PR09OvXD2lpaf745syZg6effhq33347tFotBg0ahMsuu0z2HG699Vb86le/wo9//GNoNBpMmTIF1113nWwfomjV8dmURNSlFi1a5B/+8eKLLwZt9/l8AIAPP/xQNkEXgH/C8TvvvIN7770XzzzzDKZOnQqTyYSnn346aHiVWq2W3ZYkyX//rQl1TFv3I4SAJElB9xPYfjaxhDq25T5bOzY1NRWXX345Vq1ahX79+uGjjz7Chg0bWr3vEydO4NJLL8Xtt9+Oxx57DBaLBVu2bMEvfvEL2cT2UPELIdoVf2ueeeYZPPfcc1i5ciVGjhwJo9GIe+65J2gSf3teu7b2USgUQbEGTtp/4IEH8Omnn+KPf/wjBgwYAL1ej6uvvvqcCwr4fD6MHz8eb7zxRtC2lJSUNuM/2/fM6e+Ryy+/HCtWrAjapyWpBhCUKLf3PdHaY5/ptQ58zJbn9Oqrr2Ly5Mmy/TryQ7XlcQM/j6E+o22dHDiTc319A7X2N+T0x+oqer0er732Gl5++WVUVFQgIyMDr7zyCkwmk/9EVUZGBtRqtawvhg4divLycrhcLmg0mjM+zu233y4bPpiZmdnuGBcsWIAFCxagoqICRqMRkiTh2WefRd++ff373Hfffbj33ntRVlaGxMREHD9+HEuWLPHvI0kSVqxYgSeeeALl5eVISUnBf//7XwDNJ6qIohmTIaIIc/pciblz5wZtHzZsGLRaLQoLCzFz5syQ97F582ZMmzYNd9xxh7+tI2eQO9OwYcNQWFiIoqIi/9Wh7777DvX19Rg6dGi770ej0XTaGPxbbrkF1113HbKzs9G/f3/ZmfJAeXl58Hg8eOaZZ/xXJgLnXp1JfHw8MjIy8PXXX2PGjBkAmucq7dq1C+PGjWv1uM2bN2PevHn42c9+BqD5x+WRI0c69Lq1R0pKChoaGtDY2Oj/YRq4Js3mzZtx880346c//SmA5jlEx48f79DjhOrDcePG4e2330ZqairMZvNZP4fWhHrNW042jBs3Du+++y769OnToUpr7XlPtPZ+TUlJQVlZmf/2kSNHYLfb23y8tLQ0ZGVl4fvvv8cNN9zQ7jgDDRgwABqNBlu2bMGCBQsANCdieXl5Z122vite30DDhg3DmjVrZO/Pr776CgqFAoMGDTrrz1dHqNVqZGdnAwDeeust/PjHP/b3/fTp07F27Vr4fD5/2+HDh5GRkdGuRAgALBYLLBbLOcWYlpYGoPlqt06nw+zZs2XbJUnyJ1lvvvkmcnJygl4fpVLpP8n25ptvYurUqUhNTT2nuIgiHYfJEUUYpVKJAwcO4MCBAyHP+ppMJtx///249957sWbNGhw7dgx79uzBiy++6J9MPWDAAOTl5eHTTz/F4cOHsXTpUv8E6u520UUXYdSoUbjhhhuwe/du7NixAzfddBNmzpzZoWEsffr0wfbt23H8+HFUVVW1+6pRKHPnzkV8fDwef/zxNgsnAED//v3h8Xjw5z//Gd9//z3+/ve/46WXXurwY95999148skn8d577+HgwYO444472lwsFmjux/Xr12Pr1q04cOAAfvnLX6K8vLzDj30mkydPhsFgwG9/+1scPXoUa9euDSqkMWDAAPzrX/9Cfn4+9u7diwULFnS4D/r06YNvvvkGhw4dQlVVFdxuN2644QYkJydj3rx52Lx5MwoKCrBx40bcfffdKC4uPufn9uKLL/pf88WLF6O2ttZfYGPx4sWoqanB9ddfjx07duD777/HZ599hkWLFrWZeLfnPdGnTx/YbDb897//RVVVlT/hufDCC/HCCy9g9+7dyMvLw+233x50hSuU3NxcLF++HM8//zwOHz6Mffv2YdWqVXj22Wfb/VoYjUb8z//8Dx544AF88skn+O6773DrrbfCbrfjF7/4Rbvv53Rd8foGuuGGG6DT6bBw4UJ8++23+PLLL3HnnXfixhtv9CcAZ/P5AppPzOTn56Ompgb19fXIz8+XnQg4fPgwXn/9dRw5cgQ7duzAddddh2+//RZPPPGEf5//+Z//QXV1Ne6++24cPnwYH374IZ544gksXrzYv4/NZpPdd0FBAfLz8884HK68vBz5+fk4evQoAGDfvn3+eFu0vJ8OHz6MF198Eb/61a+wfPly2TpXTz/9NPbt24f9+/fjsccew5NPPok//elP/u+YqqoqvPTSSzh48CDy8/Nx99134x//+AcXUaaYwGSIKAKZzeY2z5I/9thj+N3vfofly5dj6NChmDt3Lv7973/7hzzcfvvtuPLKK3Httddi8uTJqK6ull0l6k4tCwwmJiZixowZuOiii9CvXz+8/fbbHbqf+++/H0qlEsOGDUNKSso5zVVRKBS4+eab4fV6cdNNN7W575gxY/Dss89ixYoVGDFiBN544w0sX768w4/561//GjfddBNuvvlm/9DFlqssrVm6dCnGjRuHuXPnYtasWUhPT++SRUstFgtef/11fPTRRxg5ciTefPNN5ObmyvZ57rnnkJiYiGnTpuHyyy/H3LlzO3zW/dZbb8XgwYP9c9m++uorGAwGbNq0Cb169cKVV16JoUOHYtGiRWhqauqUK0VPPvkkVqxYgdGjR2Pz5s14//33/cObMjMz8dVXX8Hr9WLu3LkYMWIE7r77bsTHx8vmJwVqz3ti2rRpuP3223HttdciJSUFTz31FIDmoY85OTmYMWMGFixYgPvvvx8Gg+GMz+OWW27B//3f/2H16tUYOXIkZs6cidWrV8uGQrX39bjqqqtw4403Yty4cTh69Cg+/fRTJCYmduh+Tr+/zn59AxkMBnz66aeoqanBxIkTcfXVV+NHP/qRbA2cs/l8AcCll16KsWPH4t///jc2bNiAsWPHYuzYsf7tXq8XzzzzDEaPHo3Zs2fD4XBg69atsqFjOTk5+Oyzz7Bz506MGjUKd911F+6++27ZOj55eXmy+77vvvswduxY/O53v2szvpdeegljx47FrbfeCqC5IubYsWPxwQcf+PfZsWMHZs+ejZEjR+KVV17Byy+/jLvuukt2Px9//DHOP/98TJgwAR9++CHef//9oL8la9aswYQJEzB9+nTs378fGzZswKRJk874GhL1dJI410HtREQ90K233oqKigrZjwqKHsePH0ffvn2xZ88ejBkzJtzhRB2+vkQULThniIhiSn19PXbu3Ik33ngD77//frjDISIiojBiMkREMWXevHnYsWMHfvnLXwZNMCYiIqLYwmFyREREREQUk1hAgYiIiIiIYhKTISIiIiIiiklMhoiIiIiIKCYxGSIiIiIiopjEZIiIiIiIiGISkyEiIiIiIopJTIaIiIiIiCgmMRkiIiIiIqKYxGSIiIiIiIhi0v8DZafbJDO2f08AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data_frame.plot(\n", " x='Mean monthly and annual temperature for period 1961-1999', \n", " y='Temperatures',\n", " color='lightblue', \n", " figsize=(10,5),\n", " linewidth='3')\n", "\n", "# Add legend, grid and show the plot\n", "plt.grid()\n", "plt.legend()\n", "\n", "# Saving the final plot\n", "plt.savefig(\"temperatures.png\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 4 }