// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4EqEMFieldWithSpin.cc 71664 2013-06-20 08:36:05Z gcosmo $ // // // This is the standard right-hand side for equation of motion. // // 30.08.2007 Chris Gong, Peter Gumplinger // 14.02.2009 Kevin Lynch // 06.11.2009 Hiromi Iinuma // // ------------------------------------------------------------------- #include "G4EqEMFieldWithSpin.hh" #include "G4ElectroMagneticField.hh" #include "G4ThreeVector.hh" #include "globals.hh" #include "G4PhysicalConstants.hh" #include "G4SystemOfUnits.hh" G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField ) : G4EquationOfMotion( emField ), charge(0.), mass(0.), magMoment(0.), spin(0.), fElectroMagCof(0.), fMassCof(0.), omegac(0.), anomaly(0.0011659208), beta(0.), gamma(0.) { } G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() { } void G4EqEMFieldWithSpin::SetChargeMomentumMass(G4ChargeState particleCharge, G4double MomentumXc, G4double particleMass) { charge = particleCharge.GetCharge(); mass = particleMass; magMoment = particleCharge.GetMagneticDipoleMoment(); spin = particleCharge.GetSpin(); fElectroMagCof = eplus*charge*c_light ; fMassCof = mass*mass; omegac = (eplus/mass)*c_light; G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared); G4double g_BMT; if ( spin != 0. ) g_BMT = (magMoment/muB)/spin; else g_BMT = 2.; anomaly = (g_BMT - 2.)/2.; G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass)); beta = MomentumXc/E; gamma = E/mass; } void G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[], const G4double Field[], G4double dydx[] ) const { // Components of y: // 0-2 dr/ds, // 3-5 dp/ds - momentum derivatives // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives // The BMT equation, following J.D.Jackson, Classical // Electrodynamics, Second Edition, // dS/dt = (e/mc) S \cross // [ (g/2-1 +1/\gamma) B // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta // -(g/2-\gamma/(\gamma+1) \beta \cross E ] // where // S = \vec{s}, where S^2 = 1 // B = \vec{B} // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1 // E = \vec{E} G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; G4double Energy = std::sqrt( pSquared + fMassCof ); G4double cof2 = Energy/c_light ; G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; G4double inverse_velocity = Energy * pModuleInverse / c_light; G4double cof1 = fElectroMagCof*pModuleInverse ; dydx[0] = y[3]*pModuleInverse ; dydx[1] = y[4]*pModuleInverse ; dydx[2] = y[5]*pModuleInverse ; dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; dydx[6] = dydx[8] = 0.;//not used // Lab Time of flight dydx[7] = inverse_velocity; G4ThreeVector BField(Field[0],Field[1],Field[2]); G4ThreeVector EField(Field[3],Field[4],Field[5]); EField /= c_light; G4ThreeVector u(y[3], y[4], y[5]); u *= pModuleInverse; G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); G4double ucb = (anomaly+1./gamma)/beta; G4double uce = anomaly + 1./(gamma+1.); G4ThreeVector Spin(y[9],y[10],y[11]); G4double pcharge; if (charge == 0.) pcharge = 1.; else pcharge = charge; G4ThreeVector dSpin(0.,0.,0.); if (Spin.mag2() != 0.) { dSpin = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u)) // from Jackson // -uce*Spin.cross(u.cross(EField)) ); // but this form has one less operation - uce*(u*(Spin*EField) - EField*(Spin*u)) ); } dydx[ 9] = dSpin.x(); dydx[10] = dSpin.y(); dydx[11] = dSpin.z(); return ; }