// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // This is the right-hand side for equation of motion for a // massive particle in a gravitational field. // // History: // - 14.06.11 P.Gumplinger, Created. // ------------------------------------------------------------------- // Adopted from G4EqMagElectricField.hh // // Thanks to Peter Fierlinger (PSI) and // A. Capra and A. Fontana (INFN Pavia) // ------------------------------------------------------------------- #include "G4EqGravityField.hh" #include "globals.hh" #include "G4PhysicalConstants.hh" void G4EqGravityField::SetChargeMomentumMass(G4ChargeState, G4double, G4double particleMass ) { fMass = particleMass; } void G4EqGravityField::EvaluateRhsGivenB(const G4double y[], const G4double G[], G4double dydx[] ) const { // Components of y: // 0-2 dr/ds, // 3-5 dp/ds - momentum derivatives G4double momentum_mag_square = y[3]*y[3] + y[4]*y[4] + y[5]*y[5]; G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square ); G4double Energy = std::sqrt(momentum_mag_square + fMass*fMass); G4double cof2 = Energy/c_light; G4double cof1 = inv_momentum_magnitude*fMass; G4double inverse_velocity = Energy*inv_momentum_magnitude/c_light; dydx[0] = y[3]*inv_momentum_magnitude; // (d/ds)x = Vx/V dydx[1] = y[4]*inv_momentum_magnitude; // (d/ds)y = Vy/V dydx[2] = y[5]*inv_momentum_magnitude; // (d/ds)z = Vz/V dydx[3] = G[0]*cof1*cof2/c_light; dydx[4] = G[1]*cof1*cof2/c_light; // m*g dydx[5] = G[2]*cof1*cof2/c_light; // Lab Time of flight dydx[7] = inverse_velocity; return; }