/* linalg/sytd.c * * Copyright (C) 2001, 2007 Brian Gough * Copyright (C) 2019 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Factorise a symmetric matrix A into * * A = Q T Q' * * where Q is orthogonal and T is symmetric tridiagonal. Only the * diagonal and lower triangular part of A is referenced and modified. * * On exit, T is stored in the diagonal and first subdiagonal of * A. Since T is symmetric the upper diagonal is not stored. * * Q is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the first subdiagonal. * * The full matrix for Q can be obtained as the product * * Q = Q_1 Q_2 ... Q_(N-2) * * where * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [0, ... , 0, 1, A(i+1,i), A(i+2,i), ... , A(N,i)] * * This storage scheme is the same as in LAPACK. See LAPACK's * ssytd2.f for details. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 * * Note: this description uses 1-based indices. The code below uses * 0-based indices */ #include #include #include #include #include #include #include int gsl_linalg_symmtd_decomp (gsl_matrix * A, gsl_vector * tau) { if (A->size1 != A->size2) { GSL_ERROR ("symmetric tridiagonal decomposition requires square matrix", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be N-1", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; for (i = 0 ; i < N - 2; i++) { gsl_vector_view v = gsl_matrix_subcolumn (A, i, i + 1, N - i - 1); double tau_i = gsl_linalg_householder_transform (&v.vector); /* Apply the transformation H^T A H to the remaining columns */ if (tau_i != 0.0) { gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i + 1, N - i - 1, N - i - 1); double ei = gsl_vector_get(&v.vector, 0); gsl_vector_view x = gsl_vector_subvector (tau, i, N - i - 1); gsl_vector_set (&v.vector, 0, 1.0); /* x = tau * A * v */ gsl_blas_dsymv (CblasLower, tau_i, &m.matrix, &v.vector, 0.0, &x.vector); /* w = x - (1/2) tau * (x' * v) * v */ { double xv, alpha; gsl_blas_ddot(&x.vector, &v.vector, &xv); alpha = -0.5 * tau_i * xv; gsl_blas_daxpy(alpha, &v.vector, &x.vector); } /* apply the transformation A = A - v w' - w v' */ gsl_blas_dsyr2(CblasLower, -1.0, &v.vector, &x.vector, &m.matrix); gsl_vector_set (&v.vector, 0, ei); } gsl_vector_set (tau, i, tau_i); } return GSL_SUCCESS; } } /* Form the orthogonal matrix Q from the packed QR matrix */ int gsl_linalg_symmtd_unpack (const gsl_matrix * A, const gsl_vector * tau, gsl_matrix * Q, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else if (Q->size1 != A->size1 || Q->size2 != A->size1) { GSL_ERROR ("size of Q must match size of A", GSL_EBADLEN); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; gsl_vector_const_view d = gsl_matrix_const_diagonal(A);; gsl_vector_const_view sd = gsl_matrix_const_subdiagonal(A, 1);; size_t i; /* Initialize Q to the identity */ gsl_matrix_set_identity (Q); for (i = N - 2; i-- > 0;) { gsl_vector_const_view h = gsl_matrix_const_subcolumn (A, i, i + 1, N - i - 1); double ti = gsl_vector_get (tau, i); gsl_matrix_view m = gsl_matrix_submatrix (Q, i + 1, i + 1, N - i - 1, N - i - 1); gsl_vector_view work = gsl_vector_subvector(diag, 0, N - i - 1); double * ptr = gsl_vector_ptr((gsl_vector *) &h.vector, 0); double tmp = *ptr; *ptr = 1.0; gsl_linalg_householder_left (ti, &h.vector, &m.matrix, &work.vector); *ptr = tmp; } /* copy diagonal into diag */ gsl_vector_memcpy(diag, &d.vector); /* copy subdiagonal into sd */ gsl_vector_memcpy(sdiag, &sd.vector); return GSL_SUCCESS; } } int gsl_linalg_symmtd_unpack_T (const gsl_matrix * A, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { gsl_vector_const_view d = gsl_matrix_const_diagonal(A);; gsl_vector_const_view sd = gsl_matrix_const_subdiagonal(A, 1);; /* copy diagonal into diag */ gsl_vector_memcpy(diag, &d.vector); /* copy subdiagonal into sd */ gsl_vector_memcpy(sdiag, &sd.vector); return GSL_SUCCESS; } }