// @(#)root/mathcore:$Id$ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team * * * * * **********************************************************************/ // Implementation file for rotation in 3 dimensions, represented by EulerAngles // // Created by: Mark Fischler Thurs June 9 2005 // // Last update: $Id$ // #include "Math/GenVector/EulerAngles.h" #include #include "Math/GenVector/Cartesian3D.h" #include "Math/GenVector/DisplacementVector3D.h" #include "Math/GenVector/Rotation3D.h" #include "Math/GenVector/Quaternion.h" #include "Math/GenVector/RotationX.h" #include "Math/GenVector/RotationY.h" #include "Math/GenVector/RotationZ.h" #include "Math/GenVector/AxisAnglefwd.h" namespace ROOT { namespace Math { // ========== Constructors and Assignment ===================== void EulerAngles::Rectify() { // rectify if ( fTheta < 0 || fTheta > Pi() ) { Scalar t = fTheta - std::floor( fTheta/(2*Pi()) ) * 2*Pi(); if ( t <= Pi() ) { fTheta = t; } else { fTheta = 2*Pi() - t; fPhi = fPhi + Pi(); fPsi = fPsi + Pi(); } } if ( fPhi <= -Pi()|| fPhi > Pi() ) { fPhi = fPhi - std::floor( fPhi/(2*Pi()) +.5 ) * 2*Pi(); } if ( fPsi <= -Pi()|| fPsi > Pi() ) { fPsi = fPsi - std::floor( fPsi/(2*Pi()) +.5 ) * 2*Pi(); } } // Rectify() // ========== Operations ===================== // DisplacementVector3D< Cartesian3D > // EulerAngles:: // operator() (const DisplacementVector3D< Cartesian3D > & v) const // { // return Rotation3D(*this)(v); // } EulerAngles EulerAngles::operator * (const Rotation3D & r) const { // combine with a Rotation3D return EulerAngles ( Rotation3D(*this) * r ); } EulerAngles EulerAngles::operator * (const AxisAngle & a) const { // combine with a AxisAngle return EulerAngles ( Quaternion(*this) * Quaternion(a) ); } EulerAngles EulerAngles::operator * (const EulerAngles & e) const { // combine with a EulerAngles return EulerAngles ( Quaternion(*this) * Quaternion(e) ); } EulerAngles EulerAngles::operator * (const Quaternion & q) const { // combination with a Quaternion return EulerAngles ( Quaternion(*this) * q ); } EulerAngles EulerAngles::operator * (const RotationX & r) const { // combine with a RotationX return EulerAngles ( Quaternion(*this) * r ); } EulerAngles EulerAngles::operator * (const RotationY & r) const { // combine with a RotationY return EulerAngles ( Quaternion(*this) * r ); } EulerAngles EulerAngles::operator * (const RotationZ & r) const { // combine with a RotationZ // TODO -- this can be made much faster because it merely adds // the r.Angle() to phi. Scalar newPhi = fPhi + r.Angle(); if ( newPhi <= -Pi()|| newPhi > Pi() ) { newPhi = newPhi - std::floor( newPhi/(2*Pi()) +.5 ) * 2*Pi(); } return EulerAngles ( newPhi, fTheta, fPsi ); } EulerAngles operator * ( RotationX const & r, EulerAngles const & e ) { return EulerAngles(r) * e; // TODO: improve performance } EulerAngles operator * ( RotationY const & r, EulerAngles const & e ) { return EulerAngles(r) * e; // TODO: improve performance } EulerAngles operator * ( RotationZ const & r, EulerAngles const & e ) { return EulerAngles(r) * e; // TODO: improve performance } // ========== I/O ===================== std::ostream & operator<< (std::ostream & os, const EulerAngles & e) { // TODO - this will need changing for machine-readable issues // and even the human readable form may need formatting improvements os << "\n{phi: " << e.Phi() << " theta: " << e.Theta() << " psi: " << e.Psi() << "}\n"; return os; } } //namespace Math } //namespace ROOT