// @(#)root/matrix:$Id$ // Authors: Fons Rademakers, Eddy Offermann Dec 2003 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /** \class TDecompBase \ingroup Matrix Decomposition Base class This class forms the base for all the decompositions methods in the linear algebra package . It or its derived classes have installed the methods to solve equations,invert matrices and calculate determinants while monitoring the accuracy. Each derived class has always the following methods available: #### Condition() : In an iterative scheme the condition number for matrix inversion is calculated . This number is of interest for estimating the accuracy of x in the equation Ax=b For example: A is a (10x10) Hilbert matrix which looks deceivingly innocent and simple, A(i,j) = 1/(i+j+1) b(i) = Sum_j A(i,j), so a sum of a row in A the solution is x(i) = 1. i=0,.,9 However, ~~~ TMatrixD m....; TVectorD b..... TDecompLU lu(m); lu.SetTol(1.0e-12); lu.Solve(b); b.Print() ~~~ gives, ~~~ {1.000,1.000,1.000,1.000,0.998,1.000,0.993,1.001,0.996,1.000} ~~~ Looking at the condition number, this is in line with expected the accuracy . The condition number is 3.957e+12 . As a simple rule of thumb, a condition number of 1.0e+n means that you lose up to n digits of accuracy in a solution . Since doubles are stored with 15 digits, we can expect the accuracy to be as small as 3 digits . #### Det(Double_t &d1,Double_t &d2) The determinant is d1*TMath::Power(2.,d2) Expressing the determinant this way makes under/over-flow very unlikely . #### Decompose() Here the actually decomposition is performed . One can change the matrix A after the decomposition constructor has been called without effecting the decomposition result #### Solve(TVectorD &b) Solve A x = b . x is supplied through the argument and replaced with the solution . #### TransSolve(TVectorD &b) Solve A^T x = b . x is supplied through the argument and replaced with the solution . #### MultiSolve(TMatrixD &B) Solve A X = B . where X and are now matrices . X is supplied through the argument and replaced with the solution . #### Invert(TMatrixD &inv) This is of course just a call to MultiSolve with as input argument the unit matrix . Note that for a matrix a(m,n) with m > n a pseudo-inverse is calculated . ### Tolerances and Scaling The tolerance parameter (which is a member of this base class) plays a crucial role in all operations of the decomposition classes . It gives the user a powerful tool to monitor and steer the operations Its default value is sqrt(epsilon) where 1+epsilon = 1 If you do not want to be bothered by the following considerations, like in most other linear algebra packages, just set the tolerance with SetTol to an arbitrary small number . The tolerance number is used by each decomposition method to decide whether the matrix is near singular, except of course SVD which can handle singular matrices . For each decomposition this will be checked in a different way; in LU the matrix is considered singular when, at some point in the decomposition, a diagonal element < fTol . Therefore, we had to set in the example above of the (10x10) Hilbert, which is near singular, the tolerance on 10e-12 . (The fact that we have to set the tolerance < sqrt(epsilon) is a clear indication that we are losing precision .) If the matrix is flagged as being singular, operations with the decomposition will fail and will return matrices/vectors that are invalid . The observant reader will notice that by scaling the complete matrix by some small number the decomposition will detect a singular matrix . In this case the user will have to reduce the tolerance number by this factor . (For CPU time saving we decided not to make this an automatic procedure) . Code for this could look as follows: ~~~ const Double_t max_abs = Abs(a).Max(); const Double_t scale = TMath::Min(max_abs,1.); a.SetTol(a.GetTol()*scale); ~~~ For usage examples see $ROOTSYS/test/stressLinear.cxx */ #include "TDecompBase.h" #include "TMath.h" #include "TError.h" ClassImp(TDecompBase); //////////////////////////////////////////////////////////////////////////////// /// Default constructor TDecompBase::TDecompBase() { fTol = std::numeric_limits::epsilon(); fDet1 = 0; fDet2 = 0; fCondition = -1.0; fRowLwb = 0; fColLwb = 0; } //////////////////////////////////////////////////////////////////////////////// /// Copy constructor TDecompBase::TDecompBase(const TDecompBase &another) : TObject(another) { *this = another; } //////////////////////////////////////////////////////////////////////////////// Int_t TDecompBase::Hager(Double_t &est,Int_t iter) { // Estimates lower bound for norm1 of inverse of A. Returns norm // estimate in est. iter sets the maximum number of iterations to be used. // The return value indicates the number of iterations remaining on exit from // loop, hence if this is non-zero the processed "converged". // This routine uses Hager's Convex Optimisation Algorithm. // See Applied Numerical Linear Algebra, p139 & SIAM J Sci Stat Comp 1984 pp 311-16 est = -1.0; const TMatrixDBase &m = GetDecompMatrix(); if (!m.IsValid()) return iter; const Int_t n = m.GetNrows(); TVectorD b(n); TVectorD y(n); TVectorD z(n); b = Double_t(1.0/n); Double_t inv_norm1 = 0.0; Bool_t stop = kFALSE; do { y = b; if (!Solve(y)) return iter; const Double_t ynorm1 = y.Norm1(); if ( ynorm1 <= inv_norm1 ) { stop = kTRUE; } else { inv_norm1 = ynorm1; Int_t i; for (i = 0; i < n; i++) z(i) = ( y(i) >= 0.0 ? 1.0 : -1.0 ); if (!TransSolve(z)) return iter; Int_t imax = 0; Double_t maxz = TMath::Abs(z(0)); for (i = 1; i < n; i++) { const Double_t absz = TMath::Abs(z(i)); if ( absz > maxz ) { maxz = absz; imax = i; } } stop = (maxz <= b*z); if (!stop) { b = 0.0; b(imax) = 1.0; } } iter--; } while (!stop && iter); est = inv_norm1; return iter; } //////////////////////////////////////////////////////////////////////////////// void TDecompBase::DiagProd(const TVectorD &diag,Double_t tol,Double_t &d1,Double_t &d2) { // Returns product of matrix diagonal elements in d1 and d2. d1 is a mantissa and d2 // an exponent for powers of 2. If matrix is in diagonal or triangular-matrix form this // will be the determinant. // Based on Bowler, Martin, Peters and Wilkinson in HACLA const Double_t zero = 0.0; const Double_t one = 1.0; const Double_t four = 4.0; const Double_t sixteen = 16.0; const Double_t sixteenth = 0.0625; const Int_t n = diag.GetNrows(); Double_t t1 = 1.0; Double_t t2 = 0.0; Int_t niter2 =0; Int_t niter3 =0; for (Int_t i = 0; (((i < n) && (t1 !=zero ))); i++) { if (TMath::Abs(diag(i)) > tol) { t1 *= (Double_t) diag(i); while ( TMath::Abs(t1) >= one) { t1 *= sixteenth; t2 += four; niter2++; if ( niter2>100) break; } while ( TMath::Abs(t1) < sixteenth) { t1 *= sixteen; t2 -= four; niter3++; if (niter3>100) break; } } else { t1 = zero; t2 = zero; } } d1 = t1; d2 = t2; return; } //////////////////////////////////////////////////////////////////////////////// /// Matrix condition number Double_t TDecompBase::Condition() { if ( !TestBit(kCondition) ) { fCondition = -1; if (TestBit(kSingular)) return fCondition; if ( !TestBit(kDecomposed) ) { if (!Decompose()) return fCondition; } Double_t invNorm; if (Hager(invNorm)) fCondition *= invNorm; else // no convergence in Hager Error("Condition()","Hager procedure did NOT converge"); SetBit(kCondition); } return fCondition; } //////////////////////////////////////////////////////////////////////////////// /// Solve set of equations with RHS in columns of B Bool_t TDecompBase::MultiSolve(TMatrixD &B) { const TMatrixDBase &m = GetDecompMatrix(); R__ASSERT(m.IsValid() && B.IsValid()); const Int_t colLwb = B.GetColLwb(); const Int_t colUpb = B.GetColUpb(); Bool_t status = kTRUE; for (Int_t icol = colLwb; icol <= colUpb && status; icol++) { TMatrixDColumn b(B,icol); status &= Solve(b); } return status; } //////////////////////////////////////////////////////////////////////////////// /// Matrix determinant det = d1*TMath::Power(2.,d2) void TDecompBase::Det(Double_t &d1,Double_t &d2) { if ( !TestBit(kDetermined) ) { if ( !TestBit(kDecomposed) ) Decompose(); if (TestBit(kSingular) ) { fDet1 = 0.0; fDet2 = 0.0; } else { const TMatrixDBase &m = GetDecompMatrix(); R__ASSERT(m.IsValid()); TVectorD diagv(m.GetNrows()); for (Int_t i = 0; i < diagv.GetNrows(); i++) diagv(i) = m(i,i); DiagProd(diagv,fTol,fDet1,fDet2); } SetBit(kDetermined); } d1 = fDet1; d2 = fDet2; } //////////////////////////////////////////////////////////////////////////////// /// Print class members void TDecompBase::Print(Option_t * /*opt*/) const { printf("fTol = %.4e\n",fTol); printf("fDet1 = %.4e\n",fDet1); printf("fDet2 = %.4e\n",fDet2); printf("fCondition = %.4e\n",fCondition); printf("fRowLwb = %d\n",fRowLwb); printf("fColLwb = %d\n",fColLwb); } //////////////////////////////////////////////////////////////////////////////// /// Assignment operator TDecompBase &TDecompBase::operator=(const TDecompBase &source) { if (this != &source) { TObject::operator=(source); fTol = source.fTol; fDet1 = source.fDet1; fDet2 = source.fDet2; fCondition = source.fCondition; fRowLwb = source.fRowLwb; fColLwb = source.fColLwb; } return *this; } //////////////////////////////////////////////////////////////////////////////// /// Define a Householder-transformation through the parameters up and b . Bool_t DefHouseHolder(const TVectorD &vc,Int_t lp,Int_t l,Double_t &up,Double_t &beta, Double_t tol) { const Int_t n = vc.GetNrows(); const Double_t * const vp = vc.GetMatrixArray(); Double_t c = TMath::Abs(vp[lp]); Int_t i; for (i = l; i < n; i++) c = TMath::Max(TMath::Abs(vp[i]),c); up = 0.0; beta = 0.0; if (c <= tol) { // Warning("DefHouseHolder","max vector=%.4e < %.4e",c,tol); return kFALSE; } Double_t sd = vp[lp]/c; sd *= sd; for (i = l; i < n; i++) { const Double_t tmp = vp[i]/c; sd += tmp*tmp; } Double_t vpprim = c*TMath::Sqrt(sd); if (vp[lp] > 0.) vpprim = -vpprim; up = vp[lp]-vpprim; beta = 1./(vpprim*up); return kTRUE; } //////////////////////////////////////////////////////////////////////////////// /// Apply Householder-transformation. void ApplyHouseHolder(const TVectorD &vc,Double_t up,Double_t beta, Int_t lp,Int_t l,TMatrixDRow &cr) { const Int_t nv = vc.GetNrows(); const Int_t nc = (cr.GetMatrix())->GetNcols(); if (nv > nc) { Error("ApplyHouseHolder(const TVectorD &,..,TMatrixDRow &)","matrix row too short"); return; } const Int_t inc_c = cr.GetInc(); const Double_t * const vp = vc.GetMatrixArray(); Double_t * cp = cr.GetPtr(); Double_t s = cp[lp*inc_c]*up; Int_t i; for (i = l; i < nv; i++) s += cp[i*inc_c]*vp[i]; s = s*beta; cp[lp*inc_c] += s*up; for (i = l; i < nv; i++) cp[i*inc_c] += s*vp[i]; } //////////////////////////////////////////////////////////////////////////////// /// Apply Householder-transformation. void ApplyHouseHolder(const TVectorD &vc,Double_t up,Double_t beta, Int_t lp,Int_t l,TMatrixDColumn &cc) { const Int_t nv = vc.GetNrows(); const Int_t nc = (cc.GetMatrix())->GetNrows(); if (nv > nc) { Error("ApplyHouseHolder(const TVectorD &,..,TMatrixDRow &)","matrix column too short"); return; } const Int_t inc_c = cc.GetInc(); const Double_t * const vp = vc.GetMatrixArray(); Double_t * cp = cc.GetPtr(); Double_t s = cp[lp*inc_c]*up; Int_t i; for (i = l; i < nv; i++) s += cp[i*inc_c]*vp[i]; s = s*beta; cp[lp*inc_c] += s*up; for (i = l; i < nv; i++) cp[i*inc_c] += s*vp[i]; } //////////////////////////////////////////////////////////////////////////////// /// Apply Householder-transformation. void ApplyHouseHolder(const TVectorD &vc,Double_t up,Double_t beta, Int_t lp,Int_t l,TVectorD &cv) { const Int_t nv = vc.GetNrows(); const Int_t nc = cv.GetNrows(); if (nv > nc) { Error("ApplyHouseHolder(const TVectorD &,..,TVectorD &)","vector too short"); return; } const Double_t * const vp = vc.GetMatrixArray(); Double_t * cp = cv.GetMatrixArray(); Double_t s = cp[lp]*up; Int_t i; for (i = l; i < nv; i++) s += cp[i]*vp[i]; s = s*beta; cp[lp] += s*up; for (i = l; i < nv; i++) cp[i] += s*vp[i]; } //////////////////////////////////////////////////////////////////////////////// /// Defines a Givens-rotation by calculating 2 rotation parameters c and s. /// The rotation is defined with the vector components v1 and v2. void DefGivens(Double_t v1,Double_t v2,Double_t &c,Double_t &s) { const Double_t a1 = TMath::Abs(v1); const Double_t a2 = TMath::Abs(v2); if (a1 > a2) { const Double_t w = v2/v1; const Double_t q = TMath::Hypot(1.,w); c = 1./q; if (v1 < 0.) c = -c; s = c*w; } else { if (v2 != 0) { const Double_t w = v1/v2; const Double_t q = TMath::Hypot(1.,w); s = 1./q; if (v2 < 0.) s = -s; c = s*w; } else { c = 1.; s = 0.; } } } //////////////////////////////////////////////////////////////////////////////// /// Define and apply a Givens-rotation by calculating 2 rotation /// parameters c and s. The rotation is defined with and applied to the vector /// components v1 and v2. void DefAplGivens(Double_t &v1,Double_t &v2,Double_t &c,Double_t &s) { const Double_t a1 = TMath::Abs(v1); const Double_t a2 = TMath::Abs(v2); if (a1 > a2) { const Double_t w = v2/v1; const Double_t q = TMath::Hypot(1.,w); c = 1./q; if (v1 < 0.) c = -c; s = c*w; v1 = a1*q; v2 = 0.; } else { if (v2 != 0) { const Double_t w = v1/v2; const Double_t q = TMath::Hypot(1.,w); s = 1./q; if (v2 < 0.) s = -s; c = s*w; v1 = a2*q; v2 = 0.; } else { c = 1.; s = 0.; } } } //////////////////////////////////////////////////////////////////////////////// /// Apply a Givens transformation as defined by c and s to the vector components /// v1 and v2 . void ApplyGivens(Double_t &z1,Double_t &z2,Double_t c,Double_t s) { const Double_t w = z1*c+z2*s; z2 = -z1*s+z2*c; z1 = w; }