// @(#)root/matrix:$Id$ // Authors: Fons Rademakers, Eddy Offermann Nov 2003 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /** \class TMatrixTLazy \ingroup Matrix Templates of Lazy Matrix classes. ~~~ TMatrixTLazy TMatrixTSymLazy THaarMatrixT THilbertMatrixT THilbertMatrixTSym ~~~ */ #include "TMatrixT.h" #include "TMatrixTSym.h" #include "TMatrixTLazy.h" #include "TMath.h" templateClassImp(TMatrixTLazy); templateClassImp(TMatrixTSymLazy); templateClassImp(THaarMatrixT); templateClassImp(THilbertMatrixT); templateClassImp(THilbertMatrixTSym); //////////////////////////////////////////////////////////////////////////////// template THaarMatrixT::THaarMatrixT(Int_t order,Int_t no_cols) : TMatrixTLazy(1< 0",order); if (no_cols < 0) Error("THaarMatrixT","#cols(%d) in Haar should be >= 0",no_cols); } //////////////////////////////////////////////////////////////////////////////// /// Create an orthonormal (2^n)*(no_cols) Haar (sub)matrix, whose columns /// are Haar functions. If no_cols is 0, create the complete matrix with /// 2^n columns. Example, the complete Haar matrix of the second order is: /// column 1: [ 1 1 1 1]/2 /// column 2: [ 1 1 -1 -1]/2 /// column 3: [ 1 -1 0 0]/sqrt(2) /// column 4: [ 0 0 1 -1]/sqrt(2) /// Matrix m is assumed to be zero originally. template void MakeHaarMat(TMatrixT &m) { R__ASSERT(m.IsValid()); const Int_t no_rows = m.GetNrows(); const Int_t no_cols = m.GetNcols(); if (no_rows < no_cols) { Error("MakeHaarMat","#rows(%d) should be >= #cols(%d)",no_rows,no_cols); return; } if (no_cols <= 0) { Error("MakeHaarMat","#cols(%d) should be > 0",no_cols); return; } // It is easier to calculate a Haar matrix when the elements are stored // column-wise . Since we are row-wise, the transposed Haar is calculated TMatrixT mtr(no_cols,no_rows); Element *cp = mtr.GetMatrixArray(); const Element *m_end = mtr.GetMatrixArray()+no_rows*no_cols; Element norm_factor = 1/TMath::Sqrt((Element)no_rows); // First row is always 1 (up to normalization) Int_t j; for (j = 0; j < no_rows; j++) *cp++ = norm_factor; // The other functions are kind of steps: stretch of 1 followed by the // equally long stretch of -1. The functions can be grouped in families // according to their order (step size), differing only in the location // of the step Int_t step_length = no_rows/2; while (cp < m_end && step_length > 0) { for (Int_t step_position = 0; cp < m_end && step_position < no_rows; step_position += 2*step_length, cp += no_rows) { Element *ccp = cp+step_position; for (j = 0; j < step_length; j++) *ccp++ = norm_factor; for (j = 0; j < step_length; j++) *ccp++ = -norm_factor; } step_length /= 2; norm_factor *= TMath::Sqrt(2.0); } R__ASSERT(step_length != 0 || cp == m_end); R__ASSERT(no_rows != no_cols || step_length == 0); m.Transpose(mtr); } //////////////////////////////////////////////////////////////////////////////// template void THaarMatrixT::FillIn(TMatrixT &m) const { MakeHaarMat(m); } //////////////////////////////////////////////////////////////////////////////// template THilbertMatrixT::THilbertMatrixT(Int_t no_rows,Int_t no_cols) : TMatrixTLazy(no_rows,no_cols) { if (no_rows <= 0) Error("THilbertMatrixT","#rows(%d) in Hilbert should be > 0",no_rows); if (no_cols <= 0) Error("THilbertMatrixT","#cols(%d) in Hilbert should be > 0",no_cols); } //////////////////////////////////////////////////////////////////////////////// template THilbertMatrixT::THilbertMatrixT(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb) : TMatrixTLazy(row_lwb,row_upb,col_lwb,col_upb) { if (row_upb < row_lwb) Error("THilbertMatrixT","row_upb(%d) in Hilbert should be >= row_lwb(%d)",row_upb,row_lwb); if (col_upb < col_lwb) Error("THilbertMatrixT","col_upb(%d) in Hilbert should be >= col_lwb(%d)",col_upb,col_lwb); } //////////////////////////////////////////////////////////////////////////////// /// Make a Hilbert matrix. Hilb[i,j] = 1/(i+j+1), /// i,j=0...max-1 (matrix need not be a square one). template void MakeHilbertMat(TMatrixT &m) { R__ASSERT(m.IsValid()); const Int_t no_rows = m.GetNrows(); const Int_t no_cols = m.GetNcols(); if (no_rows <= 0) { Error("MakeHilbertMat","#rows(%d) should be > 0",no_rows); return; } if (no_cols <= 0) { Error("MakeHilbertMat","#cols(%d) should be > 0",no_cols); return; } Element *cp = m.GetMatrixArray(); for (Int_t i = 0; i < no_rows; i++) for (Int_t j = 0; j < no_cols; j++) *cp++ = 1.0/(i+j+1.0); } //////////////////////////////////////////////////////////////////////////////// template void THilbertMatrixT::FillIn(TMatrixT &m) const { MakeHilbertMat(m); } //////////////////////////////////////////////////////////////////////////////// template THilbertMatrixTSym::THilbertMatrixTSym(Int_t no_rows) : TMatrixTSymLazy(no_rows) { if (no_rows <= 0) Error("THilbertMatrixTSym","#rows(%d) in Hilbert should be > 0",no_rows); } //////////////////////////////////////////////////////////////////////////////// template THilbertMatrixTSym::THilbertMatrixTSym(Int_t row_lwb,Int_t row_upb) : TMatrixTSymLazy(row_lwb,row_upb) { if (row_upb < row_lwb) Error("THilbertMatrixTSym","row_upb(%d) in Hilbert should be >= row_lwb(%d)",row_upb,row_lwb); } //////////////////////////////////////////////////////////////////////////////// /// Make a Hilbert matrix. Hilb[i,j] = 1/(i+j+1), /// i,j=0...max-1 (matrix must be square). template void MakeHilbertMat(TMatrixTSym &m) { R__ASSERT(m.IsValid()); const Int_t no_rows = m.GetNrows(); if (no_rows <= 0) { Error("MakeHilbertMat","#rows(%d) should be > 0",no_rows); return; } Element *cp = m.GetMatrixArray(); for (Int_t i = 0; i < no_rows; i++) for (Int_t j = 0; j < no_rows; j++) *cp++ = 1.0/(i+j+1.0); } //////////////////////////////////////////////////////////////////////////////// template void THilbertMatrixTSym::FillIn(TMatrixTSym &m) const { MakeHilbertMat(m); } template class TMatrixTLazy ; template class TMatrixTSymLazy ; template class THaarMatrixT ; template class THilbertMatrixT ; template class THilbertMatrixTSym; template class TMatrixTLazy ; template class TMatrixTSymLazy ; template class THaarMatrixT ; template class THilbertMatrixT ; template class THilbertMatrixTSym;