// @(#)root/matrix:$Id$ // Authors: Fons Rademakers, Eddy Offermann Nov 2003 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /** \class TMatrixTSym \ingroup Matrix TMatrixTSym Template class of a symmetric matrix in the linear algebra package. See the \ref Matrix page for the documentation of the linear algebra package Note that in this implementation both matrix element m[i][j] and m[j][i] are updated and stored in memory . However, when making the object persistent only the upper right triangle is stored . */ #include "TMatrixTSym.h" #include "TBuffer.h" #include "TMatrixTLazy.h" #include "TMatrixTSymCramerInv.h" #include "TDecompLU.h" #include "TMatrixDSymEigen.h" #include "TMath.h" templateClassImp(TMatrixTSym); //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym::TMatrixTSym(Int_t no_rows) { Allocate(no_rows,no_rows,0,0,1); } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym::TMatrixTSym(Int_t row_lwb,Int_t row_upb) { const Int_t no_rows = row_upb-row_lwb+1; Allocate(no_rows,no_rows,row_lwb,row_lwb,1); } //////////////////////////////////////////////////////////////////////////////// /// option= /// - "F": array elements contains the matrix stored column-wise /// like in Fortran, so a[i,j] = elements[i+no_rows*j], /// - else it is supposed that array elements are stored row-wise /// a[i,j] = elements[i*no_cols+j] /// /// array elements are copied template TMatrixTSym::TMatrixTSym(Int_t no_rows,const Element *elements,Option_t *option) { Allocate(no_rows,no_rows); SetMatrixArray(elements,option); if (!this->IsSymmetric()) { Error("TMatrixTSym(Int_t,Element*,Option_t*)","matrix not symmetric"); } } //////////////////////////////////////////////////////////////////////////////// /// array elements are copied template TMatrixTSym::TMatrixTSym(Int_t row_lwb,Int_t row_upb,const Element *elements,Option_t *option) { const Int_t no_rows = row_upb-row_lwb+1; Allocate(no_rows,no_rows,row_lwb,row_lwb); SetMatrixArray(elements,option); if (!this->IsSymmetric()) { Error("TMatrixTSym(Int_t,Int_t,Element*,Option_t*)","matrix not symmetric"); } } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym::TMatrixTSym(const TMatrixTSym &another) : TMatrixTBase(another) { R__ASSERT(another.IsValid()); Allocate(another.GetNrows(),another.GetNcols(),another.GetRowLwb(),another.GetColLwb()); *this = another; } //////////////////////////////////////////////////////////////////////////////// /// Create a matrix applying a specific operation to the prototype. /// Example: TMatrixTSym a(10,12); ...; TMatrixTSym b(TMatrixT::kTransposed, a); /// Supported operations are: kZero, kUnit, kTransposed, kInverted and kAtA. template TMatrixTSym::TMatrixTSym(EMatrixCreatorsOp1 op,const TMatrixTSym &prototype) { R__ASSERT(prototype.IsValid()); switch(op) { case kZero: Allocate(prototype.GetNrows(),prototype.GetNcols(), prototype.GetRowLwb(),prototype.GetColLwb(),1); break; case kUnit: Allocate(prototype.GetNrows(),prototype.GetNcols(), prototype.GetRowLwb(),prototype.GetColLwb(),1); this->UnitMatrix(); break; case kTransposed: Allocate(prototype.GetNcols(), prototype.GetNrows(), prototype.GetColLwb(),prototype.GetRowLwb()); Transpose(prototype); break; case kInverted: { Allocate(prototype.GetNrows(),prototype.GetNcols(), prototype.GetRowLwb(),prototype.GetColLwb(),1); *this = prototype; // Since the user can not control the tolerance of this newly created matrix // we put it to the smallest possible number const Element oldTol = this->SetTol(std::numeric_limits::min()); this->Invert(); this->SetTol(oldTol); break; } case kAtA: Allocate(prototype.GetNcols(),prototype.GetNcols(),prototype.GetColLwb(),prototype.GetColLwb(),1); TMult(prototype); break; default: Error("TMatrixTSym(EMatrixCreatorOp1,const TMatrixTSym)", "operation %d not yet implemented", op); } } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym::TMatrixTSym(EMatrixCreatorsOp1 op,const TMatrixT &prototype) { R__ASSERT(prototype.IsValid()); switch(op) { case kAtA: Allocate(prototype.GetNcols(),prototype.GetNcols(),prototype.GetColLwb(),prototype.GetColLwb(),1); TMult(prototype); break; default: Error("TMatrixTSym(EMatrixCreatorOp1,const TMatrixT)", "operation %d not yet implemented", op); } } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym::TMatrixTSym(const TMatrixTSym &a,EMatrixCreatorsOp2 op,const TMatrixTSym &b) { R__ASSERT(a.IsValid()); R__ASSERT(b.IsValid()); switch(op) { case kPlus: { Allocate(a.GetNcols(),a.GetNcols(),a.GetColLwb(),a.GetColLwb(),1); Plus(a,b); break; } case kMinus: { Allocate(a.GetNcols(),a.GetNcols(),a.GetColLwb(),a.GetColLwb(),1); Minus(a,b); break; } default: Error("TMatrixTSym(EMatrixCreatorOp2)", "operation %d not yet implemented", op); } } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym::TMatrixTSym(const TMatrixTSymLazy &lazy_constructor) { Allocate(lazy_constructor.GetRowUpb()-lazy_constructor.GetRowLwb()+1, lazy_constructor.GetRowUpb()-lazy_constructor.GetRowLwb()+1, lazy_constructor.GetRowLwb(),lazy_constructor.GetRowLwb(),1); lazy_constructor.FillIn(*this); if (!this->IsSymmetric()) { Error("TMatrixTSym(TMatrixTSymLazy)","matrix not symmetric"); } } //////////////////////////////////////////////////////////////////////////////// /// delete data pointer m, if it was assigned on the heap template void TMatrixTSym::Delete_m(Int_t size,Element *&m) { if (m) { if (size > this->kSizeMax) delete [] m; m = nullptr; } } //////////////////////////////////////////////////////////////////////////////// /// return data pointer . if requested size <= kSizeMax, assign pointer /// to the stack space template Element* TMatrixTSym::New_m(Int_t size) { if (size == 0) return nullptr; else { if ( size <= this->kSizeMax ) return fDataStack; else { Element *heap = new Element[size]; return heap; } } } //////////////////////////////////////////////////////////////////////////////// /// copy copySize doubles from *oldp to *newp . However take care of the /// situation where both pointers are assigned to the same stack space template Int_t TMatrixTSym::Memcpy_m(Element *newp,const Element *oldp,Int_t copySize, Int_t newSize,Int_t oldSize) { if (copySize == 0 || oldp == newp) return 0; else { if ( newSize <= this->kSizeMax && oldSize <= this->kSizeMax ) { // both pointers are inside fDataStack, be careful with copy direction ! if (newp > oldp) { for (Int_t i = copySize-1; i >= 0; i--) newp[i] = oldp[i]; } else { for (Int_t i = 0; i < copySize; i++) newp[i] = oldp[i]; } } else memcpy(newp,oldp,copySize*sizeof(Element)); } return 0; } //////////////////////////////////////////////////////////////////////////////// /// Allocate new matrix. Arguments are number of rows, columns, row /// lowerbound (0 default) and column lowerbound (0 default). template void TMatrixTSym::Allocate(Int_t no_rows,Int_t no_cols,Int_t row_lwb,Int_t col_lwb, Int_t init,Int_t /*nr_nonzeros*/) { this->fIsOwner = kTRUE; this->fTol = std::numeric_limits::epsilon(); this->fNrows = 0; this->fNcols = 0; this->fRowLwb = 0; this->fColLwb = 0; this->fNelems = 0; fElements = nullptr; if (no_rows < 0 || no_cols < 0) { Error("Allocate","no_rows=%d no_cols=%d",no_rows,no_cols); this->Invalidate(); return; } this->MakeValid(); this->fNrows = no_rows; this->fNcols = no_cols; this->fRowLwb = row_lwb; this->fColLwb = col_lwb; this->fNelems = this->fNrows*this->fNcols; if (this->fNelems > 0) { fElements = New_m(this->fNelems); if (init) memset(fElements,0,this->fNelems*sizeof(Element)); } else fElements = nullptr; } //////////////////////////////////////////////////////////////////////////////// /// Symmetric matrix summation. Create a matrix C such that C = A + B. template void TMatrixTSym::Plus(const TMatrixTSym &a,const TMatrixTSym &b) { if (gMatrixCheck) { if (!AreCompatible(a,b)) { Error("Plus","matrices not compatible"); return; } if (this->GetMatrixArray() == a.GetMatrixArray()) { Error("Plus","this->GetMatrixArray() == a.GetMatrixArray()"); return; } if (this->GetMatrixArray() == b.GetMatrixArray()) { Error("Plus","this->GetMatrixArray() == b.GetMatrixArray()"); return; } } const Element * ap = a.GetMatrixArray(); const Element * bp = b.GetMatrixArray(); Element * cp = this->GetMatrixArray(); const Element * const cp_last = cp+this->fNelems; while (cp < cp_last) { *cp = *ap++ + *bp++; cp++; } } //////////////////////////////////////////////////////////////////////////////// /// Symmetric matrix summation. Create a matrix C such that C = A + B. template void TMatrixTSym::Minus(const TMatrixTSym &a,const TMatrixTSym &b) { if (gMatrixCheck) { if (!AreCompatible(a,b)) { Error("Minus","matrices not compatible"); return; } if (this->GetMatrixArray() == a.GetMatrixArray()) { Error("Minus","this->GetMatrixArray() == a.GetMatrixArray()"); return; } if (this->GetMatrixArray() == b.GetMatrixArray()) { Error("Minus","this->GetMatrixArray() == b.GetMatrixArray()"); return; } } const Element * ap = a.GetMatrixArray(); const Element * bp = b.GetMatrixArray(); Element * cp = this->GetMatrixArray(); const Element * const cp_last = cp+this->fNelems; while (cp < cp_last) { *cp = *ap++ - *bp++; cp++; } } //////////////////////////////////////////////////////////////////////////////// /// Create a matrix C such that C = A' * A. In other words, /// c[i,j] = SUM{ a[k,i] * a[k,j] }. template void TMatrixTSym::TMult(const TMatrixT &a) { R__ASSERT(a.IsValid()); #ifdef CBLAS const Element *ap = a.GetMatrixArray(); Element *cp = this->GetMatrixArray(); if (typeid(Element) == typeid(Double_t)) cblas_dgemm (CblasRowMajor,CblasTrans,CblasNoTrans,this->fNrows,this->fNcols,a.GetNrows(), 1.0,ap,a.GetNcols(),ap,a.GetNcols(),1.0,cp,this->fNcols); else if (typeid(Element) != typeid(Float_t)) cblas_sgemm (CblasRowMajor,CblasTrans,CblasNoTrans,fNrows,fNcols,a.GetNrows(), 1.0,ap,a.GetNcols(),ap,a.GetNcols(),1.0,cp,fNcols); else Error("TMult","type %s not implemented in BLAS library",typeid(Element)); #else const Int_t nb = a.GetNoElements(); const Int_t ncolsa = a.GetNcols(); const Int_t ncolsb = ncolsa; const Element * const ap = a.GetMatrixArray(); const Element * const bp = ap; Element * cp = this->GetMatrixArray(); const Element *acp0 = ap; // Pointer to A[i,0]; while (acp0 < ap+a.GetNcols()) { for (const Element *bcp = bp; bcp < bp+ncolsb; ) { // Pointer to the j-th column of A, Start bcp = A[0,0] const Element *acp = acp0; // Pointer to the i-th column of A, reset to A[0,i] Element cij = 0; while (bcp < bp+nb) { // Scan the i-th column of A and cij += *acp * *bcp; // the j-th col of A acp += ncolsa; bcp += ncolsb; } *cp++ = cij; bcp -= nb-1; // Set bcp to the (j+1)-th col } acp0++; // Set acp0 to the (i+1)-th col } R__ASSERT(cp == this->GetMatrixArray()+this->fNelems && acp0 == ap+ncolsa); #endif } //////////////////////////////////////////////////////////////////////////////// /// Matrix multiplication, with A symmetric /// Create a matrix C such that C = A' * A = A * A = A * A' template void TMatrixTSym::TMult(const TMatrixTSym &a) { R__ASSERT(a.IsValid()); #ifdef CBLAS const Element *ap = a.GetMatrixArray(); Element *cp = this->GetMatrixArray(); if (typeid(Element) == typeid(Double_t)) cblas_dsymm (CblasRowMajor,CblasLeft,CblasUpper,this->fNrows,this->fNcols,1.0, ap,a.GetNcols(),ap,a.GetNcols(),0.0,cp,this->fNcols); else if (typeid(Element) != typeid(Float_t)) cblas_ssymm (CblasRowMajor,CblasLeft,CblasUpper,fNrows,fNcols,1.0, ap1,a.GetNcols(),ap,a.GetNcols(),0.0,cp,fNcols); else Error("TMult","type %s not implemented in BLAS library",typeid(Element)); #else const Int_t nb = a.GetNoElements(); const Int_t ncolsa = a.GetNcols(); const Int_t ncolsb = ncolsa; const Element * const ap = a.GetMatrixArray(); const Element * const bp = ap; Element * cp = this->GetMatrixArray(); const Element *acp0 = ap; // Pointer to A[i,0]; while (acp0 < ap+a.GetNcols()) { for (const Element *bcp = bp; bcp < bp+ncolsb; ) { // Pointer to the j-th column of A, Start bcp = A[0,0] const Element *acp = acp0; // Pointer to the i-th column of A, reset to A[0,i] Element cij = 0; while (bcp < bp+nb) { // Scan the i-th column of A and cij += *acp * *bcp; // the j-th col of A acp += ncolsa; bcp += ncolsb; } *cp++ = cij; bcp -= nb-1; // Set bcp to the (j+1)-th col } acp0++; // Set acp0 to the (i+1)-th col } R__ASSERT(cp == this->GetMatrixArray()+this->fNelems && acp0 == ap+ncolsa); #endif } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym &TMatrixTSym::Use(Int_t row_lwb,Int_t row_upb,Element *data) { if (gMatrixCheck && row_upb < row_lwb) { Error("Use","row_upb=%d < row_lwb=%d",row_upb,row_lwb); return *this; } this->Clear(); this->fNrows = row_upb-row_lwb+1; this->fNcols = this->fNrows; this->fRowLwb = row_lwb; this->fColLwb = row_lwb; this->fNelems = this->fNrows*this->fNcols; fElements = data; this->fIsOwner = kFALSE; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Get submatrix [row_lwb..row_upb][row_lwb..row_upb]; The indexing range of the /// returned matrix depends on the argument option: /// /// option == "S" : return [0..row_upb-row_lwb+1][0..row_upb-row_lwb+1] (default) /// else : return [row_lwb..row_upb][row_lwb..row_upb] template TMatrixTSym &TMatrixTSym::GetSub(Int_t row_lwb,Int_t row_upb, TMatrixTSym &target,Option_t *option) const { if (gMatrixCheck) { R__ASSERT(this->IsValid()); if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) { Error("GetSub","row_lwb out of bounds"); return target; } if (row_upb < this->fRowLwb || row_upb > this->fRowLwb+this->fNrows-1) { Error("GetSub","row_upb out of bounds"); return target; } if (row_upb < row_lwb) { Error("GetSub","row_upb < row_lwb"); return target; } } TString opt(option); opt.ToUpper(); const Int_t shift = (opt.Contains("S")) ? 1 : 0; Int_t row_lwb_sub; Int_t row_upb_sub; if (shift) { row_lwb_sub = 0; row_upb_sub = row_upb-row_lwb; } else { row_lwb_sub = row_lwb; row_upb_sub = row_upb; } target.ResizeTo(row_lwb_sub,row_upb_sub,row_lwb_sub,row_upb_sub); const Int_t nrows_sub = row_upb_sub-row_lwb_sub+1; if (target.GetRowIndexArray() && target.GetColIndexArray()) { for (Int_t irow = 0; irow < nrows_sub; irow++) { for (Int_t icol = 0; icol < nrows_sub; icol++) { target(irow+row_lwb_sub,icol+row_lwb_sub) = (*this)(row_lwb+irow,row_lwb+icol); } } } else { const Element *ap = this->GetMatrixArray()+(row_lwb-this->fRowLwb)*this->fNrows+(row_lwb-this->fRowLwb); Element *bp = target.GetMatrixArray(); for (Int_t irow = 0; irow < nrows_sub; irow++) { const Element *ap_sub = ap; for (Int_t icol = 0; icol < nrows_sub; icol++) { *bp++ = *ap_sub++; } ap += this->fNrows; } } return target; } //////////////////////////////////////////////////////////////////////////////// /// Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the /// returned matrix depends on the argument option: /// /// option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default) /// else : return [row_lwb..row_upb][col_lwb..col_upb] template TMatrixTBase &TMatrixTSym::GetSub(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, TMatrixTBase &target,Option_t *option) const { if (gMatrixCheck) { R__ASSERT(this->IsValid()); if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) { Error("GetSub","row_lwb out of bounds"); return target; } if (col_lwb < this->fColLwb || col_lwb > this->fColLwb+this->fNcols-1) { Error("GetSub","col_lwb out of bounds"); return target; } if (row_upb < this->fRowLwb || row_upb > this->fRowLwb+this->fNrows-1) { Error("GetSub","row_upb out of bounds"); return target; } if (col_upb < this->fColLwb || col_upb > this->fColLwb+this->fNcols-1) { Error("GetSub","col_upb out of bounds"); return target; } if (row_upb < row_lwb || col_upb < col_lwb) { Error("GetSub","row_upb < row_lwb || col_upb < col_lwb"); return target; } } TString opt(option); opt.ToUpper(); const Int_t shift = (opt.Contains("S")) ? 1 : 0; const Int_t row_lwb_sub = (shift) ? 0 : row_lwb; const Int_t row_upb_sub = (shift) ? row_upb-row_lwb : row_upb; const Int_t col_lwb_sub = (shift) ? 0 : col_lwb; const Int_t col_upb_sub = (shift) ? col_upb-col_lwb : col_upb; target.ResizeTo(row_lwb_sub,row_upb_sub,col_lwb_sub,col_upb_sub); const Int_t nrows_sub = row_upb_sub-row_lwb_sub+1; const Int_t ncols_sub = col_upb_sub-col_lwb_sub+1; if (target.GetRowIndexArray() && target.GetColIndexArray()) { for (Int_t irow = 0; irow < nrows_sub; irow++) { for (Int_t icol = 0; icol < ncols_sub; icol++) { target(irow+row_lwb_sub,icol+col_lwb_sub) = (*this)(row_lwb+irow,col_lwb+icol); } } } else { const Element *ap = this->GetMatrixArray()+(row_lwb-this->fRowLwb)*this->fNcols+(col_lwb-this->fColLwb); Element *bp = target.GetMatrixArray(); for (Int_t irow = 0; irow < nrows_sub; irow++) { const Element *ap_sub = ap; for (Int_t icol = 0; icol < ncols_sub; icol++) { *bp++ = *ap_sub++; } ap += this->fNcols; } } return target; } //////////////////////////////////////////////////////////////////////////////// /// Insert matrix source starting at [row_lwb][row_lwb], thereby overwriting the part /// [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source]; template TMatrixTSym &TMatrixTSym::SetSub(Int_t row_lwb,const TMatrixTBase &source) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(source.IsValid()); if (!source.IsSymmetric()) { Error("SetSub","source matrix is not symmetric"); return *this; } if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) { Error("SetSub","row_lwb outof bounds"); return *this; } if (row_lwb+source.GetNrows() > this->fRowLwb+this->fNrows) { Error("SetSub","source matrix too large"); return *this; } } const Int_t nRows_source = source.GetNrows(); if (source.GetRowIndexArray() && source.GetColIndexArray()) { const Int_t rowlwb_s = source.GetRowLwb(); for (Int_t irow = 0; irow < nRows_source; irow++) { for (Int_t icol = 0; icol < nRows_source; icol++) { (*this)(row_lwb+irow,row_lwb+icol) = source(rowlwb_s+irow,rowlwb_s+icol); } } } else { const Element *bp = source.GetMatrixArray(); Element *ap = this->GetMatrixArray()+(row_lwb-this->fRowLwb)*this->fNrows+(row_lwb-this->fRowLwb); for (Int_t irow = 0; irow < nRows_source; irow++) { Element *ap_sub = ap; for (Int_t icol = 0; icol < nRows_source; icol++) { *ap_sub++ = *bp++; } ap += this->fNrows; } } return *this; } //////////////////////////////////////////////////////////////////////////////// /// Insert matrix source starting at [row_lwb][col_lwb] in a symmetric fashion, thereby overwriting the part /// [row_lwb..row_lwb+nrows_source][row_lwb..row_lwb+nrows_source]; template TMatrixTBase &TMatrixTSym::SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixTBase &source) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(source.IsValid()); if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) { Error("SetSub","row_lwb out of bounds"); return *this; } if (col_lwb < this->fColLwb || col_lwb > this->fColLwb+this->fNcols-1) { Error("SetSub","col_lwb out of bounds"); return *this; } if (row_lwb+source.GetNrows() > this->fRowLwb+this->fNrows || col_lwb+source.GetNcols() > this->fRowLwb+this->fNrows) { Error("SetSub","source matrix too large"); return *this; } if (col_lwb+source.GetNcols() > this->fRowLwb+this->fNrows || row_lwb+source.GetNrows() > this->fRowLwb+this->fNrows) { Error("SetSub","source matrix too large"); return *this; } } const Int_t nRows_source = source.GetNrows(); const Int_t nCols_source = source.GetNcols(); const Int_t rowlwb_s = source.GetRowLwb(); const Int_t collwb_s = source.GetColLwb(); if (row_lwb >= col_lwb) { // lower triangle Int_t irow; for (irow = 0; irow < nRows_source; irow++) { for (Int_t icol = 0; col_lwb+icol <= row_lwb+irow && icol < nCols_source; icol++) { (*this)(row_lwb+irow,col_lwb+icol) = source(irow+rowlwb_s,icol+collwb_s); } } // upper triangle for (irow = 0; irow < nCols_source; irow++) { for (Int_t icol = nRows_source-1; row_lwb+icol > irow+col_lwb && icol >= 0; icol--) { (*this)(col_lwb+irow,row_lwb+icol) = source(icol+rowlwb_s,irow+collwb_s); } } } else { } return *this; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTBase &TMatrixTSym::SetMatrixArray(const Element *data,Option_t *option) { TMatrixTBase::SetMatrixArray(data,option); if (!this->IsSymmetric()) { Error("SetMatrixArray","Matrix is not symmetric after Set"); } return *this; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTBase &TMatrixTSym::Shift(Int_t row_shift,Int_t col_shift) { if (row_shift != col_shift) { Error("Shift","row_shift != col_shift"); return *this; } return TMatrixTBase::Shift(row_shift,col_shift); } //////////////////////////////////////////////////////////////////////////////// /// Set size of the matrix to nrows x ncols /// New dynamic elements are created, the overlapping part of the old ones are /// copied to the new structures, then the old elements are deleted. template TMatrixTBase &TMatrixTSym::ResizeTo(Int_t nrows,Int_t ncols,Int_t /*nr_nonzeros*/) { R__ASSERT(this->IsValid()); if (!this->fIsOwner) { Error("ResizeTo(Int_t,Int_t)","Not owner of data array,cannot resize"); return *this; } if (nrows != ncols) { Error("ResizeTo(Int_t,Int_t)","nrows != ncols"); return *this; } if (this->fNelems > 0) { if (this->fNrows == nrows && this->fNcols == ncols) return *this; else if (nrows == 0 || ncols == 0) { this->fNrows = nrows; this->fNcols = ncols; this->Clear(); return *this; } Element *elements_old = GetMatrixArray(); const Int_t nelems_old = this->fNelems; const Int_t nrows_old = this->fNrows; const Int_t ncols_old = this->fNcols; Allocate(nrows,ncols); R__ASSERT(this->IsValid()); Element *elements_new = GetMatrixArray(); // new memory should be initialized but be careful not to wipe out the stack // storage. Initialize all when old or new storage was on the heap if (this->fNelems > this->kSizeMax || nelems_old > this->kSizeMax) memset(elements_new,0,this->fNelems*sizeof(Element)); else if (this->fNelems > nelems_old) memset(elements_new+nelems_old,0,(this->fNelems-nelems_old)*sizeof(Element)); // Copy overlap const Int_t ncols_copy = TMath::Min(this->fNcols,ncols_old); const Int_t nrows_copy = TMath::Min(this->fNrows,nrows_old); const Int_t nelems_new = this->fNelems; if (ncols_old < this->fNcols) { for (Int_t i = nrows_copy-1; i >= 0; i--) { Memcpy_m(elements_new+i*this->fNcols,elements_old+i*ncols_old,ncols_copy, nelems_new,nelems_old); if (this->fNelems <= this->kSizeMax && nelems_old <= this->kSizeMax) memset(elements_new+i*this->fNcols+ncols_copy,0,(this->fNcols-ncols_copy)*sizeof(Element)); } } else { for (Int_t i = 0; i < nrows_copy; i++) Memcpy_m(elements_new+i*this->fNcols,elements_old+i*ncols_old,ncols_copy, nelems_new,nelems_old); } Delete_m(nelems_old,elements_old); } else { Allocate(nrows,ncols,0,0,1); } return *this; } //////////////////////////////////////////////////////////////////////////////// /// Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb] /// New dynamic elements are created, the overlapping part of the old ones are /// copied to the new structures, then the old elements are deleted. template TMatrixTBase &TMatrixTSym::ResizeTo(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, Int_t /*nr_nonzeros*/) { R__ASSERT(this->IsValid()); if (!this->fIsOwner) { Error("ResizeTo(Int_t,Int_t,Int_t,Int_t)","Not owner of data array,cannot resize"); return *this; } if (row_lwb != col_lwb) { Error("ResizeTo(Int_t,Int_t,Int_t,Int_t)","row_lwb != col_lwb"); return *this; } if (row_upb != col_upb) { Error("ResizeTo(Int_t,Int_t,Int_t,Int_t)","row_upb != col_upb"); return *this; } const Int_t new_nrows = row_upb-row_lwb+1; const Int_t new_ncols = col_upb-col_lwb+1; if (this->fNelems > 0) { if (this->fNrows == new_nrows && this->fNcols == new_ncols && this->fRowLwb == row_lwb && this->fColLwb == col_lwb) return *this; else if (new_nrows == 0 || new_ncols == 0) { this->fNrows = new_nrows; this->fNcols = new_ncols; this->fRowLwb = row_lwb; this->fColLwb = col_lwb; this->Clear(); return *this; } Element *elements_old = GetMatrixArray(); const Int_t nelems_old = this->fNelems; const Int_t nrows_old = this->fNrows; const Int_t ncols_old = this->fNcols; const Int_t rowLwb_old = this->fRowLwb; const Int_t colLwb_old = this->fColLwb; Allocate(new_nrows,new_ncols,row_lwb,col_lwb); R__ASSERT(this->IsValid()); Element *elements_new = GetMatrixArray(); // new memory should be initialized but be careful not to wipe out the stack // storage. Initialize all when old or new storage was on the heap if (this->fNelems > this->kSizeMax || nelems_old > this->kSizeMax) memset(elements_new,0,this->fNelems*sizeof(Element)); else if (this->fNelems > nelems_old) memset(elements_new+nelems_old,0,(this->fNelems-nelems_old)*sizeof(Element)); // Copy overlap const Int_t rowLwb_copy = TMath::Max(this->fRowLwb,rowLwb_old); const Int_t colLwb_copy = TMath::Max(this->fColLwb,colLwb_old); const Int_t rowUpb_copy = TMath::Min(this->fRowLwb+this->fNrows-1,rowLwb_old+nrows_old-1); const Int_t colUpb_copy = TMath::Min(this->fColLwb+this->fNcols-1,colLwb_old+ncols_old-1); const Int_t nrows_copy = rowUpb_copy-rowLwb_copy+1; const Int_t ncols_copy = colUpb_copy-colLwb_copy+1; if (nrows_copy > 0 && ncols_copy > 0) { const Int_t colOldOff = colLwb_copy-colLwb_old; const Int_t colNewOff = colLwb_copy-this->fColLwb; if (ncols_old < this->fNcols) { for (Int_t i = nrows_copy-1; i >= 0; i--) { const Int_t iRowOld = rowLwb_copy+i-rowLwb_old; const Int_t iRowNew = rowLwb_copy+i-this->fRowLwb; Memcpy_m(elements_new+iRowNew*this->fNcols+colNewOff, elements_old+iRowOld*ncols_old+colOldOff,ncols_copy,this->fNelems,nelems_old); if (this->fNelems <= this->kSizeMax && nelems_old <= this->kSizeMax) memset(elements_new+iRowNew*this->fNcols+colNewOff+ncols_copy,0, (this->fNcols-ncols_copy)*sizeof(Element)); } } else { for (Int_t i = 0; i < nrows_copy; i++) { const Int_t iRowOld = rowLwb_copy+i-rowLwb_old; const Int_t iRowNew = rowLwb_copy+i-this->fRowLwb; Memcpy_m(elements_new+iRowNew*this->fNcols+colNewOff, elements_old+iRowOld*ncols_old+colOldOff,ncols_copy,this->fNelems,nelems_old); } } } Delete_m(nelems_old,elements_old); } else { Allocate(new_nrows,new_ncols,row_lwb,col_lwb,1); } return *this; } //////////////////////////////////////////////////////////////////////////////// template Double_t TMatrixTSym::Determinant() const { const TMatrixT &tmp = *this; TDecompLU lu(tmp,this->fTol); Double_t d1,d2; lu.Det(d1,d2); return d1*TMath::Power(2.0,d2); } //////////////////////////////////////////////////////////////////////////////// template void TMatrixTSym::Determinant(Double_t &d1,Double_t &d2) const { const TMatrixT &tmp = *this; TDecompLU lu(tmp,this->fTol); lu.Det(d1,d2); } //////////////////////////////////////////////////////////////////////////////// /// Invert the matrix and calculate its determinant /// Notice that the LU decomposition is used instead of Bunch-Kaufman /// Bunch-Kaufman guarantees a symmetric inverted matrix but is slower than LU . /// The user can access Bunch-Kaufman through the TDecompBK class . template TMatrixTSym &TMatrixTSym::Invert(Double_t *det) { R__ASSERT(this->IsValid()); TMatrixD tmp(*this); if (TDecompLU::InvertLU(tmp,Double_t(this->fTol),det)) { const Double_t *p1 = tmp.GetMatrixArray(); Element *p2 = this->GetMatrixArray(); for (Int_t i = 0; i < this->GetNoElements(); i++) p2[i] = p1[i]; } return *this; } //////////////////////////////////////////////////////////////////////////////// /// Invert the matrix and calculate its determinant template TMatrixTSym &TMatrixTSym::InvertFast(Double_t *det) { R__ASSERT(this->IsValid()); const Char_t nRows = Char_t(this->GetNrows()); switch (nRows) { case 1: { Element *pM = this->GetMatrixArray(); if (*pM == 0.) { Error("InvertFast","matrix is singular"); *det = 0; } else { *det = *pM; *pM = 1.0/(*pM); } return *this; } case 2: { TMatrixTSymCramerInv::Inv2x2(*this,det); return *this; } case 3: { TMatrixTSymCramerInv::Inv3x3(*this,det); return *this; } case 4: { TMatrixTSymCramerInv::Inv4x4(*this,det); return *this; } case 5: { TMatrixTSymCramerInv::Inv5x5(*this,det); return *this; } case 6: { TMatrixTSymCramerInv::Inv6x6(*this,det); return *this; } default: { TMatrixD tmp(*this); if (TDecompLU::InvertLU(tmp,Double_t(this->fTol),det)) { const Double_t *p1 = tmp.GetMatrixArray(); Element *p2 = this->GetMatrixArray(); for (Int_t i = 0; i < this->GetNoElements(); i++) p2[i] = p1[i]; } return *this; } } } //////////////////////////////////////////////////////////////////////////////// /// Transpose a matrix. template TMatrixTSym &TMatrixTSym::Transpose(const TMatrixTSym &source) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(source.IsValid()); if (this->fNrows != source.GetNcols() || this->fRowLwb != source.GetColLwb()) { Error("Transpose","matrix has wrong shape"); return *this; } } *this = source; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Perform a rank 1 operation on the matrix: /// A += alpha * v * v^T template TMatrixTSym &TMatrixTSym::Rank1Update(const TVectorT &v,Element alpha) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(v.IsValid()); if (v.GetNoElements() < this->fNrows) { Error("Rank1Update","vector too short"); return *this; } } const Element * const pv = v.GetMatrixArray(); Element *trp = this->GetMatrixArray(); // pointer to UR part and diagonal, traverse row-wise Element *tcp = trp; // pointer to LL part, traverse col-wise for (Int_t i = 0; i < this->fNrows; i++) { trp += i; // point to [i,i] tcp += i*this->fNcols; // point to [i,i] const Element tmp = alpha*pv[i]; for (Int_t j = i; j < this->fNcols; j++) { if (j > i) *tcp += tmp*pv[j]; *trp++ += tmp*pv[j]; tcp += this->fNcols; } tcp -= this->fNelems-1; // point to [0,i] } return *this; } //////////////////////////////////////////////////////////////////////////////// /// Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) /// This is a similarity transform when B is orthogonal . It is more /// efficient than applying the actual multiplication because this /// routine realizes that the final matrix is symmetric . template TMatrixTSym &TMatrixTSym::Similarity(const TMatrixT &b) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(b.IsValid()); if (this->fNcols != b.GetNcols() || this->fColLwb != b.GetColLwb()) { Error("Similarity(const TMatrixT &)","matrices incompatible"); return *this; } } const Int_t ncolsa = this->fNcols; const Int_t nb = b.GetNoElements(); const Int_t nrowsb = b.GetNrows(); const Int_t ncolsb = b.GetNcols(); const Element * const bp = b.GetMatrixArray(); Element work[kWorkMax]; Bool_t isAllocated = kFALSE; Element *bap = work; if (nrowsb*ncolsa > kWorkMax) { isAllocated = kTRUE; bap = new Element[nrowsb*ncolsa]; } AMultB(bp,nb,ncolsb,this->fElements,this->fNelems,this->fNcols,bap); if (nrowsb != this->fNrows) this->ResizeTo(nrowsb,nrowsb); #ifdef CBLAS Element *cp = this->GetMatrixArray(); if (typeid(Element) == typeid(Double_t)) cblas_dgemm (CblasRowMajor,CblasNoTrans,CblasTrans,this->fNrows,this->fNcols,ba.GetNcols(), 1.0,bap,ba.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols); else if (typeid(Element) != typeid(Float_t)) cblas_sgemm (CblasRowMajor,CblasNoTrans,CblasTrans,this->fNrows,this->fNcols,ba.GetNcols(), 1.0,bap,ba.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols); else Error("Similarity","type %s not implemented in BLAS library",typeid(Element)); #else const Int_t nba = nrowsb*ncolsa; const Int_t ncolsba = ncolsa; const Element * bi1p = bp; Element * cp = this->GetMatrixArray(); Element * const cp0 = cp; Int_t ishift = 0; const Element *barp0 = bap; while (barp0 < bap+nba) { const Element *brp0 = bi1p; while (brp0 < bp+nb) { const Element *barp = barp0; const Element *brp = brp0; Element cij = 0; while (brp < brp0+ncolsb) cij += *barp++ * *brp++; *cp++ = cij; brp0 += ncolsb; } barp0 += ncolsba; bi1p += ncolsb; cp += ++ishift; } R__ASSERT(cp == cp0+this->fNelems+ishift && barp0 == bap+nba); cp = cp0; for (Int_t irow = 0; irow < this->fNrows; irow++) { const Int_t rowOff1 = irow*this->fNrows; for (Int_t icol = 0; icol < irow; icol++) { const Int_t rowOff2 = icol*this->fNrows; cp[rowOff1+icol] = cp[rowOff2+irow]; } } #endif if (isAllocated) delete [] bap; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Calculate B * (*this) * B^T , final matrix will be (nrowsb x nrowsb) /// This is a similarity transform when B is orthogonal . It is more /// efficient than applying the actual multiplication because this /// routine realizes that the final matrix is symmetric . template TMatrixTSym &TMatrixTSym::Similarity(const TMatrixTSym &b) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(b.IsValid()); if (this->fNcols != b.GetNcols() || this->fColLwb != b.GetColLwb()) { Error("Similarity(const TMatrixTSym &)","matrices incompatible"); return *this; } } #ifdef CBLAS const Int_t nrowsb = b.GetNrows(); const Int_t ncolsa = this->GetNcols(); Element work[kWorkMax]; Bool_t isAllocated = kFALSE; Element *abtp = work; if (this->fNcols > kWorkMax) { isAllocated = kTRUE; abtp = new Element[this->fNcols]; } const TMatrixT abt(*this,TMatrixT::kMultTranspose,b); const Element *bp = b.GetMatrixArray(); Element *cp = this->GetMatrixArray(); if (typeid(Element) == typeid(Double_t)) cblas_dsymm (CblasRowMajor,CblasLeft,CblasUpper,this->fNrows,this->fNcols,1.0, bp,b.GetNcols(),abtp,abt.GetNcols(),0.0,cp,this->fNcols); else if (typeid(Element) != typeid(Float_t)) cblas_ssymm (CblasRowMajor,CblasLeft,CblasUpper,this->fNrows,this->fNcols,1.0, bp,b.GetNcols(),abtp,abt.GetNcols(),0.0,cp,this->fNcols); else Error("Similarity","type %s not implemented in BLAS library",typeid(Element)); if (isAllocated) delete [] abtp; #else const Int_t ncolsa = this->GetNcols(); const Int_t nb = b.GetNoElements(); const Int_t nrowsb = b.GetNrows(); const Int_t ncolsb = b.GetNcols(); const Element * const bp = b.GetMatrixArray(); Element work[kWorkMax]; Bool_t isAllocated = kFALSE; Element *bap = work; if (nrowsb*ncolsa > kWorkMax) { isAllocated = kTRUE; bap = new Element[nrowsb*ncolsa]; } AMultB(bp,nb,ncolsb,this->fElements,this->fNelems,this->fNcols,bap); const Int_t nba = nrowsb*ncolsa; const Int_t ncolsba = ncolsa; const Element * bi1p = bp; Element * cp = this->GetMatrixArray(); Element * const cp0 = cp; Int_t ishift = 0; const Element *barp0 = bap; while (barp0 < bap+nba) { const Element *brp0 = bi1p; while (brp0 < bp+nb) { const Element *barp = barp0; const Element *brp = brp0; Element cij = 0; while (brp < brp0+ncolsb) cij += *barp++ * *brp++; *cp++ = cij; brp0 += ncolsb; } barp0 += ncolsba; bi1p += ncolsb; cp += ++ishift; } R__ASSERT(cp == cp0+this->fNelems+ishift && barp0 == bap+nba); cp = cp0; for (Int_t irow = 0; irow < this->fNrows; irow++) { const Int_t rowOff1 = irow*this->fNrows; for (Int_t icol = 0; icol < irow; icol++) { const Int_t rowOff2 = icol*this->fNrows; cp[rowOff1+icol] = cp[rowOff2+irow]; } } if (isAllocated) delete [] bap; #endif return *this; } //////////////////////////////////////////////////////////////////////////////// /// Calculate scalar v * (*this) * v^T template Element TMatrixTSym::Similarity(const TVectorT &v) const { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(v.IsValid()); if (this->fNcols != v.GetNrows() || this->fColLwb != v.GetLwb()) { Error("Similarity(const TVectorT &)","vector and matrix incompatible"); return -1.; } } const Element *mp = this->GetMatrixArray(); // Matrix row ptr const Element *vp = v.GetMatrixArray(); // vector ptr Element sum1 = 0; const Element * const vp_first = vp; const Element * const vp_last = vp+v.GetNrows(); while (vp < vp_last) { Element sum2 = 0; for (const Element *sp = vp_first; sp < vp_last; ) sum2 += *mp++ * *sp++; sum1 += sum2 * *vp++; } R__ASSERT(mp == this->GetMatrixArray()+this->GetNoElements()); return sum1; } //////////////////////////////////////////////////////////////////////////////// /// Calculate B^T * (*this) * B , final matrix will be (ncolsb x ncolsb) /// It is more efficient than applying the actual multiplication because this /// routine realizes that the final matrix is symmetric . template TMatrixTSym &TMatrixTSym::SimilarityT(const TMatrixT &b) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); R__ASSERT(b.IsValid()); if (this->fNrows != b.GetNrows() || this->fRowLwb != b.GetRowLwb()) { Error("SimilarityT(const TMatrixT &)","matrices incompatible"); return *this; } } const Int_t ncolsb = b.GetNcols(); const Int_t ncolsa = this->GetNcols(); Element work[kWorkMax]; Bool_t isAllocated = kFALSE; Element *btap = work; if (ncolsb*ncolsa > kWorkMax) { isAllocated = kTRUE; btap = new Element[ncolsb*ncolsa]; } TMatrixT bta; bta.Use(ncolsb,ncolsa,btap); bta.TMult(b,*this); if (ncolsb != this->fNcols) this->ResizeTo(ncolsb,ncolsb); #ifdef CBLAS const Element *bp = b.GetMatrixArray(); Element *cp = this->GetMatrixArray(); if (typeid(Element) == typeid(Double_t)) cblas_dgemm (CblasRowMajor,CblasNoTrans,CblasNoTrans,this->fNrows,this->fNcols,bta.GetNcols(), 1.0,btap,bta.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols); else if (typeid(Element) != typeid(Float_t)) cblas_sgemm (CblasRowMajor,CblasNoTrans,CblasNoTrans,this->fNrows,this->fNcols,bta.GetNcols(), 1.0,btap,bta.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols); else Error("similarityT","type %s not implemented in BLAS library",typeid(Element)); #else const Int_t nbta = bta.GetNoElements(); const Int_t nb = b.GetNoElements(); const Int_t ncolsbta = bta.GetNcols(); const Element * const bp = b.GetMatrixArray(); Element * cp = this->GetMatrixArray(); Element * const cp0 = cp; Int_t ishift = 0; const Element *btarp0 = btap; // Pointer to A[i,0]; const Element *bcp0 = bp; while (btarp0 < btap+nbta) { for (const Element *bcp = bcp0; bcp < bp+ncolsb; ) { // Pointer to the j-th column of B, Start bcp = B[0,0] const Element *btarp = btarp0; // Pointer to the i-th row of A, reset to A[i,0] Element cij = 0; while (bcp < bp+nb) { // Scan the i-th row of A and cij += *btarp++ * *bcp; // the j-th col of B bcp += ncolsb; } *cp++ = cij; bcp -= nb-1; // Set bcp to the (j+1)-th col } btarp0 += ncolsbta; // Set ap to the (i+1)-th row bcp0++; cp += ++ishift; } R__ASSERT(cp == cp0+this->fNelems+ishift && btarp0 == btap+nbta); cp = cp0; for (Int_t irow = 0; irow < this->fNrows; irow++) { const Int_t rowOff1 = irow*this->fNrows; for (Int_t icol = 0; icol < irow; icol++) { const Int_t rowOff2 = icol*this->fNrows; cp[rowOff1+icol] = cp[rowOff2+irow]; } } #endif if (isAllocated) delete [] btap; return *this; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym &TMatrixTSym::operator=(const TMatrixTSym &source) { if (gMatrixCheck && !AreCompatible(*this,source)) { Error("operator=","matrices not compatible"); return *this; } if (this->GetMatrixArray() != source.GetMatrixArray()) { TObject::operator=(source); memcpy(this->GetMatrixArray(),source.fElements,this->fNelems*sizeof(Element)); } return *this; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym &TMatrixTSym::operator=(const TMatrixTSymLazy &lazy_constructor) { R__ASSERT(this->IsValid()); if (lazy_constructor.fRowUpb != this->GetRowUpb() || lazy_constructor.fRowLwb != this->GetRowLwb()) { Error("operator=(const TMatrixTSymLazy&)", "matrix is incompatible with " "the assigned Lazy matrix"); return *this; } lazy_constructor.FillIn(*this); return *this; } //////////////////////////////////////////////////////////////////////////////// /// Assign val to every element of the matrix. template TMatrixTSym &TMatrixTSym::operator=(Element val) { R__ASSERT(this->IsValid()); Element *ep = fElements; const Element * const ep_last = ep+this->fNelems; while (ep < ep_last) *ep++ = val; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Add val to every element of the matrix. template TMatrixTSym &TMatrixTSym::operator+=(Element val) { R__ASSERT(this->IsValid()); Element *ep = fElements; const Element * const ep_last = ep+this->fNelems; while (ep < ep_last) *ep++ += val; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Subtract val from every element of the matrix. template TMatrixTSym &TMatrixTSym::operator-=(Element val) { R__ASSERT(this->IsValid()); Element *ep = fElements; const Element * const ep_last = ep+this->fNelems; while (ep < ep_last) *ep++ -= val; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Multiply every element of the matrix with val. template TMatrixTSym &TMatrixTSym::operator*=(Element val) { R__ASSERT(this->IsValid()); Element *ep = fElements; const Element * const ep_last = ep+this->fNelems; while (ep < ep_last) *ep++ *= val; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Add the source matrix. template TMatrixTSym &TMatrixTSym::operator+=(const TMatrixTSym &source) { if (gMatrixCheck && !AreCompatible(*this,source)) { Error("operator+=","matrices not compatible"); return *this; } const Element *sp = source.GetMatrixArray(); Element *tp = this->GetMatrixArray(); const Element * const tp_last = tp+this->fNelems; while (tp < tp_last) *tp++ += *sp++; return *this; } //////////////////////////////////////////////////////////////////////////////// /// Subtract the source matrix. template TMatrixTSym &TMatrixTSym::operator-=(const TMatrixTSym &source) { if (gMatrixCheck && !AreCompatible(*this,source)) { Error("operator-=","matrices not compatible"); return *this; } const Element *sp = source.GetMatrixArray(); Element *tp = this->GetMatrixArray(); const Element * const tp_last = tp+this->fNelems; while (tp < tp_last) *tp++ -= *sp++; return *this; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTBase &TMatrixTSym::Apply(const TElementActionT &action) { R__ASSERT(this->IsValid()); Element val = 0; Element *trp = this->GetMatrixArray(); // pointer to UR part and diagonal, traverse row-wise Element *tcp = trp; // pointer to LL part, traverse col-wise for (Int_t i = 0; i < this->fNrows; i++) { trp += i; // point to [i,i] tcp += i*this->fNcols; // point to [i,i] for (Int_t j = i; j < this->fNcols; j++) { action.Operation(val); if (j > i) *tcp = val; *trp++ = val; tcp += this->fNcols; } tcp -= this->fNelems-1; // point to [0,i] } return *this; } //////////////////////////////////////////////////////////////////////////////// /// Apply action to each element of the matrix. To action the location /// of the current element is passed. template TMatrixTBase &TMatrixTSym::Apply(const TElementPosActionT &action) { R__ASSERT(this->IsValid()); Element val = 0; Element *trp = this->GetMatrixArray(); // pointer to UR part and diagonal, traverse row-wise Element *tcp = trp; // pointer to LL part, traverse col-wise for (Int_t i = 0; i < this->fNrows; i++) { action.fI = i+this->fRowLwb; trp += i; // point to [i,i] tcp += i*this->fNcols; // point to [i,i] for (Int_t j = i; j < this->fNcols; j++) { action.fJ = j+this->fColLwb; action.Operation(val); if (j > i) *tcp = val; *trp++ = val; tcp += this->fNcols; } tcp -= this->fNelems-1; // point to [0,i] } return *this; } //////////////////////////////////////////////////////////////////////////////// /// randomize matrix element values but keep matrix symmetric template TMatrixTBase &TMatrixTSym::Randomize(Element alpha,Element beta,Double_t &seed) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); if (this->fNrows != this->fNcols || this->fRowLwb != this->fColLwb) { Error("Randomize(Element,Element,Element &","matrix should be square"); return *this; } } const Element scale = beta-alpha; const Element shift = alpha/scale; Element *ep = GetMatrixArray(); for (Int_t i = 0; i < this->fNrows; i++) { const Int_t off = i*this->fNcols; for (Int_t j = 0; j <= i; j++) { ep[off+j] = scale*(Drand(seed)+shift); if (i != j) { ep[j*this->fNcols+i] = ep[off+j]; } } } return *this; } //////////////////////////////////////////////////////////////////////////////// /// randomize matrix element values but keep matrix symmetric positive definite template TMatrixTSym &TMatrixTSym::RandomizePD(Element alpha,Element beta,Double_t &seed) { if (gMatrixCheck) { R__ASSERT(this->IsValid()); if (this->fNrows != this->fNcols || this->fRowLwb != this->fColLwb) { Error("RandomizeSym(Element,Element,Element &","matrix should be square"); return *this; } } const Element scale = beta-alpha; const Element shift = alpha/scale; Element *ep = GetMatrixArray(); Int_t i; for (i = 0; i < this->fNrows; i++) { const Int_t off = i*this->fNcols; for (Int_t j = 0; j <= i; j++) ep[off+j] = scale*(Drand(seed)+shift); } for (i = this->fNrows-1; i >= 0; i--) { const Int_t off1 = i*this->fNcols; for (Int_t j = i; j >= 0; j--) { const Int_t off2 = j*this->fNcols; ep[off1+j] *= ep[off2+j]; for (Int_t k = j-1; k >= 0; k--) { ep[off1+j] += ep[off1+k]*ep[off2+k]; } if (i != j) ep[off2+i] = ep[off1+j]; } } return *this; } //////////////////////////////////////////////////////////////////////////////// /// Return a matrix containing the eigen-vectors ordered by descending eigen-values. /// For full functionality use TMatrixDSymEigen . template const TMatrixT TMatrixTSym::EigenVectors(TVectorT &eigenValues) const { TMatrixDSym tmp = *this; TMatrixDSymEigen eigen(tmp); eigenValues.ResizeTo(this->fNrows); eigenValues = eigen.GetEigenValues(); return eigen.GetEigenVectors(); } //////////////////////////////////////////////////////////////////////////////// /// Check to see if two matrices are identical. template Bool_t operator==(const TMatrixTSym &m1,const TMatrixTSym &m2) { if (!AreCompatible(m1,m2)) return kFALSE; return (memcmp(m1.GetMatrixArray(),m2.GetMatrixArray(), m1.GetNoElements()*sizeof(Element)) == 0); } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator+(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target(source1); target += source2; return target; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator+(const TMatrixTSym &source1,Element val) { TMatrixTSym target(source1); target += val; return target; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator+(Element val,const TMatrixTSym &source1) { return operator+(source1,val); } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator-(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target(source1); target -= source2; return target; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator-(const TMatrixTSym &source1,Element val) { TMatrixTSym target(source1); target -= val; return target; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator-(Element val,const TMatrixTSym &source1) { return Element(-1.0)*operator-(source1,val); } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator*(const TMatrixTSym &source1,Element val) { TMatrixTSym target(source1); target *= val; return target; } //////////////////////////////////////////////////////////////////////////////// template TMatrixTSym operator*(Element val,const TMatrixTSym &source1) { return operator*(source1,val); } //////////////////////////////////////////////////////////////////////////////// /// Logical AND template TMatrixTSym operator&&(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target; if (gMatrixCheck && !AreCompatible(source1,source2)) { Error("operator&&(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible"); return target; } target.ResizeTo(source1); const Element *sp1 = source1.GetMatrixArray(); const Element *sp2 = source2.GetMatrixArray(); Element *tp = target.GetMatrixArray(); const Element * const tp_last = tp+target.GetNoElements(); while (tp < tp_last) *tp++ = (*sp1++ != 0.0 && *sp2++ != 0.0); return target; } //////////////////////////////////////////////////////////////////////////////// /// Logical Or template TMatrixTSym operator||(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target; if (gMatrixCheck && !AreCompatible(source1,source2)) { Error("operator||(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible"); return target; } target.ResizeTo(source1); const Element *sp1 = source1.GetMatrixArray(); const Element *sp2 = source2.GetMatrixArray(); Element *tp = target.GetMatrixArray(); const Element * const tp_last = tp+target.GetNoElements(); while (tp < tp_last) *tp++ = (*sp1++ != 0.0 || *sp2++ != 0.0); return target; } //////////////////////////////////////////////////////////////////////////////// /// source1 > source2 template TMatrixTSym operator>(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target; if (gMatrixCheck && !AreCompatible(source1,source2)) { Error("operator>(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible"); return target; } target.ResizeTo(source1); const Element *sp1 = source1.GetMatrixArray(); const Element *sp2 = source2.GetMatrixArray(); Element *tp = target.GetMatrixArray(); const Element * const tp_last = tp+target.GetNoElements(); while (tp < tp_last) { *tp++ = (*sp1) > (*sp2); sp1++; sp2++; } return target; } //////////////////////////////////////////////////////////////////////////////// /// source1 >= source2 template TMatrixTSym operator>=(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target; if (gMatrixCheck && !AreCompatible(source1,source2)) { Error("operator>=(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible"); return target; } target.ResizeTo(source1); const Element *sp1 = source1.GetMatrixArray(); const Element *sp2 = source2.GetMatrixArray(); Element *tp = target.GetMatrixArray(); const Element * const tp_last = tp+target.GetNoElements(); while (tp < tp_last) { *tp++ = (*sp1) >= (*sp2); sp1++; sp2++; } return target; } //////////////////////////////////////////////////////////////////////////////// /// source1 <= source2 template TMatrixTSym operator<=(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target; if (gMatrixCheck && !AreCompatible(source1,source2)) { Error("operator<=(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible"); return target; } target.ResizeTo(source1); const Element *sp1 = source1.GetMatrixArray(); const Element *sp2 = source2.GetMatrixArray(); Element *tp = target.GetMatrixArray(); const Element * const tp_last = tp+target.GetNoElements(); while (tp < tp_last) { *tp++ = (*sp1) <= (*sp2); sp1++; sp2++; } return target; } //////////////////////////////////////////////////////////////////////////////// /// source1 < source2 template TMatrixTSym operator<(const TMatrixTSym &source1,const TMatrixTSym &source2) { TMatrixTSym target; if (gMatrixCheck && !AreCompatible(source1,source2)) { Error("operator<(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible"); return target; } target.ResizeTo(source1); const Element *sp1 = source1.GetMatrixArray(); const Element *sp2 = source2.GetMatrixArray(); Element *tp = target.GetMatrixArray(); const Element * const tp_last = tp+target.GetNoElements(); while (tp < tp_last) { *tp++ = (*sp1) < (*sp2); sp1++; sp2++; } return target; } //////////////////////////////////////////////////////////////////////////////// /// Modify addition: target += scalar * source. template TMatrixTSym &Add(TMatrixTSym &target,Element scalar,const TMatrixTSym &source) { if (gMatrixCheck && !AreCompatible(target,source)) { ::Error("Add","matrices not compatible"); return target; } const Int_t nrows = target.GetNrows(); const Int_t ncols = target.GetNcols(); const Int_t nelems = target.GetNoElements(); const Element *sp = source.GetMatrixArray(); Element *trp = target.GetMatrixArray(); // pointer to UR part and diagonal, traverse row-wise Element *tcp = target.GetMatrixArray(); // pointer to LL part, traverse col-wise for (Int_t i = 0; i < nrows; i++) { sp += i; trp += i; // point to [i,i] tcp += i*ncols; // point to [i,i] for (Int_t j = i; j < ncols; j++) { const Element tmp = scalar * *sp++; if (j > i) *tcp += tmp; *trp++ += tmp; tcp += ncols; } tcp -= nelems-1; // point to [0,i] } return target; } //////////////////////////////////////////////////////////////////////////////// /// Multiply target by the source, element-by-element. template TMatrixTSym &ElementMult(TMatrixTSym &target,const TMatrixTSym &source) { if (gMatrixCheck && !AreCompatible(target,source)) { ::Error("ElementMult","matrices not compatible"); return target; } const Int_t nrows = target.GetNrows(); const Int_t ncols = target.GetNcols(); const Int_t nelems = target.GetNoElements(); const Element *sp = source.GetMatrixArray(); Element *trp = target.GetMatrixArray(); // pointer to UR part and diagonal, traverse row-wise Element *tcp = target.GetMatrixArray(); // pointer to LL part, traverse col-wise for (Int_t i = 0; i < nrows; i++) { sp += i; trp += i; // point to [i,i] tcp += i*ncols; // point to [i,i] for (Int_t j = i; j < ncols; j++) { if (j > i) *tcp *= *sp; *trp++ *= *sp++; tcp += ncols; } tcp -= nelems-1; // point to [0,i] } return target; } //////////////////////////////////////////////////////////////////////////////// /// Multiply target by the source, element-by-element. template TMatrixTSym &ElementDiv(TMatrixTSym &target,const TMatrixTSym &source) { if (gMatrixCheck && !AreCompatible(target,source)) { ::Error("ElementDiv","matrices not compatible"); return target; } const Int_t nrows = target.GetNrows(); const Int_t ncols = target.GetNcols(); const Int_t nelems = target.GetNoElements(); const Element *sp = source.GetMatrixArray(); Element *trp = target.GetMatrixArray(); // pointer to UR part and diagonal, traverse row-wise Element *tcp = target.GetMatrixArray(); // pointer to LL part, traverse col-wise for (Int_t i = 0; i < nrows; i++) { sp += i; trp += i; // point to [i,i] tcp += i*ncols; // point to [i,i] for (Int_t j = i; j < ncols; j++) { if (*sp != 0.0) { if (j > i) *tcp /= *sp; *trp++ /= *sp++; } else { const Int_t irow = (sp-source.GetMatrixArray())/source.GetNcols(); const Int_t icol = (sp-source.GetMatrixArray())%source.GetNcols(); Error("ElementDiv","source (%d,%d) is zero",irow,icol); trp++; } tcp += ncols; } tcp -= nelems-1; // point to [0,i] } return target; } //////////////////////////////////////////////////////////////////////////////// /// Stream an object of class TMatrixTSym. template void TMatrixTSym::Streamer(TBuffer &R__b) { if (R__b.IsReading()) { UInt_t R__s, R__c; Version_t R__v = R__b.ReadVersion(&R__s, &R__c); Clear(); R__b.ReadClassBuffer(TMatrixTBase::Class(),this,R__v,R__s,R__c); fElements = new Element[this->fNelems]; Int_t i; for (i = 0; i < this->fNrows; i++) { R__b.ReadFastArray(fElements+i*this->fNcols+i,this->fNcols-i); } // copy to Lower left triangle for (i = 0; i < this->fNrows; i++) { for (Int_t j = 0; j < i; j++) { fElements[i*this->fNcols+j] = fElements[j*this->fNrows+i]; } } if (this->fNelems <= this->kSizeMax) { memcpy(fDataStack,fElements,this->fNelems*sizeof(Element)); delete [] fElements; fElements = fDataStack; } } else { R__b.WriteClassBuffer(TMatrixTBase::Class(),this); // Only write the Upper right triangle for (Int_t i = 0; i < this->fNrows; i++) { R__b.WriteFastArray(fElements+i*this->fNcols+i,this->fNcols-i); } } } #include "TMatrixFSymfwd.h" template class TMatrixTSym; template Bool_t operator== (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator+ (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator+ (const TMatrixFSym &source1, Float_t val); template TMatrixFSym operator+ ( Float_t val ,const TMatrixFSym &source2); template TMatrixFSym operator- (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator- (const TMatrixFSym &source1, Float_t val); template TMatrixFSym operator- ( Float_t val ,const TMatrixFSym &source2); template TMatrixFSym operator* (const TMatrixFSym &source, Float_t val ); template TMatrixFSym operator* ( Float_t val, const TMatrixFSym &source ); template TMatrixFSym operator&& (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator|| (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator> (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator>= (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator<= (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym operator< (const TMatrixFSym &source1,const TMatrixFSym &source2); template TMatrixFSym &Add (TMatrixFSym &target, Float_t scalar,const TMatrixFSym &source); template TMatrixFSym &ElementMult(TMatrixFSym &target,const TMatrixFSym &source); template TMatrixFSym &ElementDiv (TMatrixFSym &target,const TMatrixFSym &source); #include "TMatrixDSymfwd.h" template class TMatrixTSym; template Bool_t operator== (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator+ (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator+ (const TMatrixDSym &source1, Double_t val); template TMatrixDSym operator+ ( Double_t val ,const TMatrixDSym &source2); template TMatrixDSym operator- (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator- (const TMatrixDSym &source1, Double_t val); template TMatrixDSym operator- ( Double_t val ,const TMatrixDSym &source2); template TMatrixDSym operator* (const TMatrixDSym &source, Double_t val ); template TMatrixDSym operator* ( Double_t val, const TMatrixDSym &source ); template TMatrixDSym operator&& (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator|| (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator> (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator>= (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator<= (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym operator< (const TMatrixDSym &source1,const TMatrixDSym &source2); template TMatrixDSym &Add (TMatrixDSym &target, Double_t scalar,const TMatrixDSym &source); template TMatrixDSym &ElementMult(TMatrixDSym &target,const TMatrixDSym &source); template TMatrixDSym &ElementDiv (TMatrixDSym &target,const TMatrixDSym &source);