#ifndef ROOT_Math_BrentMethods #define ROOT_Math_BrentMethods #include "Math/IFunctionfwd.h" namespace ROOT { namespace Math { namespace BrentMethods { /** Grid search implementation, used to bracket the minimum and later use Brent's method with the bracketed interval The step of the search is set to (xmax-xmin)/fNpx type: 0-returns MinimumX 1-returns Minimum 2-returns MaximumX 3-returns Maximum 4-returns X corresponding to fy */ double MinimStep(const IGenFunction* f, int type, double &xmin, double &xmax, double fy, int npx = 100, bool useLog = false); /** Finds a minimum of a function, if the function is unimodal between xmin and xmax This method uses a combination of golden section search and parabolic interpolation Details about convergence and properties of this algorithm can be found in the book by R.P.Brent "Algorithms for Minimization Without Derivatives" or in the "Numerical Recipes", chapter 10.2 convergence is reached using tolerance = 2 *( epsrel * abs(x) + epsabs) type: 0-returns MinimumX 1-returns Minimum 2-returns MaximumX 3-returns Maximum 4-returns X corresponding to fy if ok=true the method has converged. Maxiter returns the actual number of iteration performed */ double MinimBrent(const IGenFunction* f, int type, double &xmin, double &xmax, double xmiddle, double fy, bool &ok, int &niter, double epsabs = 1.E-8, double epsrel = 1.E-10, int maxiter = 100 ); } // end namespace BrentMethods } // end namespace Math } // end namespace ROOT #endif