// @(#)root/smatrix:$Id$ // Authors: T. Glebe, L. Moneta 2005 #ifndef ROOT_Math_Dfinv #define ROOT_Math_Dfinv // ******************************************************************** // // source: // // type: source code // // created: 03. Apr 2001 // // author: Thorsten Glebe // HERA-B Collaboration // Max-Planck-Institut fuer Kernphysik // Saupfercheckweg 1 // 69117 Heidelberg // Germany // E-mail: T.Glebe@mpi-hd.mpg.de // // Description: Matrix inversion // Code was taken from CERNLIB::kernlib dfinv function, translated // from FORTRAN to C++ and optimized. // // changes: // 03 Apr 2001 (TG) creation // // ******************************************************************** namespace ROOT { namespace Math { /** Dfinv. Function to compute the inverse of a square matrix (\f$A^{-1}\f$) of dimension \f$idim\f$ and order \f$n\f$. The routine Dfactir must be called before Dfinv! @author T. Glebe */ template bool Dfinv(Matrix& rhs, unsigned int* ir) { #ifdef XXX if (idim < n || n <= 0 || n==1) { return false; } #endif typename Matrix::value_type* a = rhs.Array(); /* Local variables */ unsigned int nxch, i, j, k, m, ij; unsigned int im2, nm1, nmi; typename Matrix::value_type s31, s34, ti; /* Parameter adjustments */ a -= idim + 1; --ir; /* Function Body */ /* finv.inc */ a[idim + 2] = -a[(idim << 1) + 2] * (a[idim + 1] * a[idim + 2]); a[(idim << 1) + 1] = -a[(idim << 1) + 1]; if (n != 2) { for (i = 3; i <= n; ++i) { const unsigned int ii = i * idim; const unsigned int iii = i + ii; const unsigned int imi = ii - idim; const unsigned int iimi = i + imi; im2 = i - 2; for (j = 1; j <= im2; ++j) { const unsigned int ji = j * idim; const unsigned int jii = j + ii; s31 = 0.; for (k = j; k <= im2; ++k) { s31 += a[k + ji] * a[i + k * idim]; a[jii] += a[j + (k + 1) * idim] * a[k + 1 + ii]; } // for k a[i + ji] = -a[iii] * (a[i - 1 + ji] * a[iimi] + s31); a[jii] *= -1; } // for j a[iimi] = -a[iii] * (a[i - 1 + imi] * a[iimi]); a[i - 1 + ii] *= -1; } // for i } // if n!=2 nm1 = n - 1; for (i = 1; i <= nm1; ++i) { const unsigned int ii = i * idim; nmi = n - i; for (j = 1; j <= i; ++j) { const unsigned int ji = j * idim; const unsigned int iji = i + ji; for (k = 1; k <= nmi; ++k) { a[iji] += a[i + k + ji] * a[i + (i + k) * idim]; } // for k } // for j for (j = 1; j <= nmi; ++j) { const unsigned int ji = j * idim; s34 = 0.; for (k = j; k <= nmi; ++k) { s34 += a[i + k + ii + ji] * a[i + (i + k) * idim]; } // for k a[i + ii + ji] = s34; } // for j } // for i nxch = ir[n]; if (nxch == 0) { return true; } for (m = 1; m <= nxch; ++m) { k = nxch - m + 1; ij = ir[k]; i = ij / 4096; j = ij % 4096; const unsigned int ii = i * idim; const unsigned int ji = j * idim; for (k = 1; k <= n; ++k) { ti = a[k + ii]; a[k + ii] = a[k + ji]; a[k + ji] = ti; } // for k } // for m return true; } // Dfinv } // namespace Math } // namespace ROOT #endif /* ROOT_Math_Dfinv */