// @(#)root/minuit2:$Id$ // Author: L. Moneta Wed Oct 18 11:48:00 2006 /********************************************************************** * * * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT * * * * * **********************************************************************/ // Header file for class Minuit2Minimizer #ifndef ROOT_Minuit2_Minuit2Minimizer #define ROOT_Minuit2_Minuit2Minimizer #include "Math/Minimizer.h" #include "Minuit2/MnUserParameterState.h" #include "Math/IFunctionfwd.h" #include #include #include namespace ROOT { namespace Minuit2 { class ModularFunctionMinimizer; class FCNBase; class FunctionMinimum; class MnTraceObject; // enumeration specifying the type of Minuit2 minimizers enum EMinimizerType { kMigrad, kSimplex, kCombined, kScan, kFumili, kMigradBFGS }; } // namespace Minuit2 namespace Minuit2 { //_____________________________________________________________________________________________________ /** Minuit2Minimizer class implementing the ROOT::Math::Minimizer interface for Minuit2 minimization algorithm. In ROOT it can be instantiated using the plug-in manager (plug-in "Minuit2") Using a string (used by the plugin manager) or via an enumeration an one can set all the possible minimization algorithms (Migrad, Simplex, Combined, Scan and Fumili). Refer to the [guide](https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html) for an introduction how Minuit works. @ingroup Minuit */ class Minuit2Minimizer : public ROOT::Math::Minimizer { public: /** Default constructor */ Minuit2Minimizer(ROOT::Minuit2::EMinimizerType type = ROOT::Minuit2::kMigrad); /** Constructor with a char (used by PM) */ Minuit2Minimizer(const char *type); /** Destructor (no operations) */ ~Minuit2Minimizer() override; private: // usually copying is non trivial, so we make this unaccessible /** Copy constructor */ Minuit2Minimizer(const Minuit2Minimizer &); /** Assignment operator */ Minuit2Minimizer &operator=(const Minuit2Minimizer &rhs); public: // clear resources (parameters) for consecutives minimizations void Clear() override; /// set the function to minimize void SetFunction(const ROOT::Math::IMultiGenFunction &func) override; /// set the function implementing Hessian computation void SetHessianFunction(std::function &, double *)> hfunc) override; /// set free variable bool SetVariable(unsigned int ivar, const std::string &name, double val, double step) override; /// set lower limit variable (override if minimizer supports them ) bool SetLowerLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double lower) override; /// set upper limit variable (override if minimizer supports them ) bool SetUpperLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double upper) override; /// set upper/lower limited variable (override if minimizer supports them ) bool SetLimitedVariable(unsigned int ivar, const std::string &name, double val, double step, double /* lower */, double /* upper */) override; /// set fixed variable (override if minimizer supports them ) bool SetFixedVariable(unsigned int /* ivar */, const std::string & /* name */, double /* val */) override; /// set variable bool SetVariableValue(unsigned int ivar, double val) override; // set variable values bool SetVariableValues(const double *val) override; /// set the step size of an already existing variable bool SetVariableStepSize(unsigned int ivar, double step) override; /// set the lower-limit of an already existing variable bool SetVariableLowerLimit(unsigned int ivar, double lower) override; /// set the upper-limit of an already existing variable bool SetVariableUpperLimit(unsigned int ivar, double upper) override; /// set the limits of an already existing variable bool SetVariableLimits(unsigned int ivar, double lower, double upper) override; /// fix an existing variable bool FixVariable(unsigned int ivar) override; /// release an existing variable bool ReleaseVariable(unsigned int ivar) override; /// query if an existing variable is fixed (i.e. considered constant in the minimization) /// note that by default all variables are not fixed bool IsFixedVariable(unsigned int ivar) const override; /// get variable settings in a variable object (like ROOT::Fit::ParamsSettings) bool GetVariableSettings(unsigned int ivar, ROOT::Fit::ParameterSettings &varObj) const override; /// get name of variables (override if minimizer support storing of variable names) std::string VariableName(unsigned int ivar) const override; /// get index of variable given a variable given a name /// return -1 if variable is not found int VariableIndex(const std::string &name) const override; /** method to perform the minimization. Return false in case the minimization did not converge. In this case a status code different than zero is set (retrieved by the derived method Minimizer::Status() )" status = 1 : Covariance was made pos defined status = 2 : Hesse is invalid status = 3 : Edm is above max status = 4 : Reached call limit status = 5 : Any other failure */ bool Minimize() override; /// return minimum function value double MinValue() const override { return fState.Fval(); } /// return expected distance reached from the minimum double Edm() const override { return fState.Edm(); } /// return pointer to X values at the minimum const double *X() const override { return &fValues.front(); } /// return pointer to gradient values at the minimum const double *MinGradient() const override { return nullptr; } // not available in Minuit2 /// number of function calls to reach the minimum unsigned int NCalls() const override { return fState.NFcn(); } /// this is <= Function().NDim() which is the total /// number of variables (free+ constrained ones) unsigned int NDim() const override { return fDim; } /// number of free variables (real dimension of the problem) /// this is <= Function().NDim() which is the total unsigned int NFree() const override { return fState.VariableParameters(); } /// minimizer provides error and error matrix bool ProvidesError() const override { return true; } /// return errors at the minimum const double *Errors() const override; /** return covariance matrix elements if the variable is fixed or const the value is zero The ordering of the variables is the same as in errors and parameter value. This is different from the direct interface of Minuit2 or TMinuit where the values were obtained only to variable parameters */ double CovMatrix(unsigned int i, unsigned int j) const override; /** Fill the passed array with the covariance matrix elements if the variable is fixed or const the value is zero. The array will be filled as cov[i *ndim + j] The ordering of the variables is the same as in errors and parameter value. This is different from the direct interface of Minuit2 or TMinuit where the values were obtained only to variable parameters */ bool GetCovMatrix(double *cov) const override; /** Fill the passed array with the Hessian matrix elements The Hessian matrix is the matrix of the second derivatives and is the inverse of the covariance matrix If the variable is fixed or const the values for that variables are zero. The array will be filled as h[i *ndim + j] */ bool GetHessianMatrix(double *h) const override; /** return the status of the covariance matrix status = -1 : not available (inversion failed or Hesse failed) status = 0 : available but not positive defined status = 1 : covariance only approximate status = 2 : full matrix but forced pos def status = 3 : full accurate matrix */ int CovMatrixStatus() const override; /** return correlation coefficient between variable i and j. If the variable is fixed or const the return value is zero */ double Correlation(unsigned int i, unsigned int j) const override; /** get global correlation coefficient for the variable i. This is a number between zero and one which gives the correlation between the i-th variable and that linear combination of all other variables which is most strongly correlated with i. If the variable is fixed or const the return value is zero */ double GlobalCC(unsigned int i) const override; /** get the minos error for parameter i, return false if Minos failed A minimizaiton must be performed befre, return false if no minimization has been done In case of Minos failed the status error is updated as following status += 10 * minosStatus. The Minos status of last Minos run can also be retrieved by calling MinosStatus() */ bool GetMinosError(unsigned int i, double &errLow, double &errUp, int = 0) override; /** MINOS status code of last Minos run `status & 1 > 0` : invalid lower error `status & 2 > 0` : invalid upper error `status & 4 > 0` : invalid because maximum number of function calls exceeded `status & 8 > 0` : a new minimum has been found `status & 16 > 0` : error is truncated because parameter is at lower/upper limit */ int MinosStatus() const override { return fMinosStatus; } /** scan a parameter i around the minimum. A minimization must have been done before, return false if it is not the case */ bool Scan(unsigned int i, unsigned int &nstep, double *x, double *y, double xmin = 0, double xmax = 0) override; /** find the contour points (xi,xj) of the function for parameter i and j around the minimum The contour will be find for value of the function = Min + ErrorUp(); */ bool Contour(unsigned int i, unsigned int j, unsigned int &npoints, double *xi, double *xj) override; /** perform a full calculation of the Hessian matrix for error calculation If a valid minimum exists the calculation is done on the minimum point otherwise is performed in the current set values of parameters Status code of minimizer is updated according to the following convention (in case Hesse failed) status += 100*hesseStatus where hesse status is: status = 1 : hesse failed status = 2 : matrix inversion failed status = 3 : matrix is not pos defined */ bool Hesse() override; /// return reference to the objective function /// virtual const ROOT::Math::IGenFunction & Function() const; /// print result of minimization void PrintResults() override; /// set an object to trace operation for each iteration /// The object must be a (or inherit from) ROOT::Minuit2::MnTraceObject and implement operator() (int, const /// MinimumState & state) void SetTraceObject(MnTraceObject &obj); /// set storage level = 1 : store all iteration states (default) /// = 0 : store only first and last state to save memory void SetStorageLevel(int level); /// return the minimizer state (containing values, step size , etc..) const ROOT::Minuit2::MnUserParameterState &State() { return fState; } protected: // protected function for accessing the internal Minuit2 object. Needed for derived classes virtual const ROOT::Minuit2::ModularFunctionMinimizer *GetMinimizer() const { return fMinimizer; } virtual void SetMinimizer(ROOT::Minuit2::ModularFunctionMinimizer *m) { fMinimizer = m; } void SetMinimizerType(ROOT::Minuit2::EMinimizerType type); virtual const ROOT::Minuit2::FCNBase *GetFCN() const { return fMinuitFCN; } /// examine the minimum result bool ExamineMinimum(const ROOT::Minuit2::FunctionMinimum &min); // internal function to compute Minos errors int RunMinosError(unsigned int i, double &errLow, double &errUp, int runopt); private: unsigned int fDim; // dimension of the function to be minimized bool fUseFumili; int fMinosStatus = -1; // Minos status code ROOT::Minuit2::MnUserParameterState fState; // std::vector fMinosErrors; ROOT::Minuit2::ModularFunctionMinimizer *fMinimizer; ROOT::Minuit2::FCNBase *fMinuitFCN; ROOT::Minuit2::FunctionMinimum *fMinimum; mutable std::vector fValues; mutable std::vector fErrors; }; } // namespace Minuit2 } // end namespace ROOT #endif /* ROOT_Minuit2_Minuit2Minimizer */