// @(#)root/roostats:$Id$ // Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke /************************************************************************* * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOSTATS_HypoTestInverter #define ROOSTATS_HypoTestInverter #include "RooStats/IntervalCalculator.h" #include "RooStats/HypoTestInverterResult.h" class RooRealVar; class TGraphErrors; #include #include namespace RooStats { //class HypoTestCalculator; class HybridCalculator; class FrequentistCalculator; class AsymptoticCalculator; class HypoTestCalculatorGeneric; class TestStatistic; class HypoTestInverter : public IntervalCalculator { public: enum ECalculatorType { kUndefined = 0, kHybrid = 1, kFrequentist = 2, kAsymptotic = 3}; /// default constructor (used only for I/O) HypoTestInverter(); /// constructor from generic hypotest calculator HypoTestInverter( HypoTestCalculatorGeneric & hc, RooRealVar* scannedVariable =nullptr, double size = 0.05) ; /// constructor from hybrid calculator HypoTestInverter( HybridCalculator & hc, RooRealVar* scannedVariable = nullptr, double size = 0.05) ; /// constructor from frequentist calculator HypoTestInverter( FrequentistCalculator & hc, RooRealVar* scannedVariable, double size = 0.05) ; /// constructor from asymptotic calculator HypoTestInverter( AsymptoticCalculator & hc, RooRealVar* scannedVariable, double size = 0.05) ; /// constructor from two ModelConfigs (first sb (the null model) then b (the alt model) /// creating a calculator inside HypoTestInverter( RooAbsData& data, ModelConfig &sb, ModelConfig &b, RooRealVar * scannedVariable = nullptr, ECalculatorType type = kFrequentist, double size = 0.05) ; HypoTestInverterResult* GetInterval() const override; void Clear(); /// Set up to perform a fixed scan. /// \param[in] nBins Number of points to scan. /// \param[in] xMin Lower limit of range to be scanned. /// \param[in] xMax Upper limit of range to be scanned. /// \param[in] scanLog Run in logarithmic steps along x. void SetFixedScan(int nBins, double xMin = 1, double xMax = -1, bool scanLog = false ) { fNBins = nBins; fXmin = xMin; fXmax = xMax; fScanLog = scanLog; } /// Use automatic scanning, i.e. adaptive void SetAutoScan() { SetFixedScan(0); } /// Run a fixed scan. /// \param[in] nBins Number of points to scan. /// \param[in] xMin Lower limit of range to be scanned. /// \param[in] xMax Upper limit of range to be scanned. /// \param[in] scanLog Run in logarithmic steps along x. bool RunFixedScan( int nBins, double xMin, double xMax, bool scanLog = false ) const; bool RunOnePoint( double thisX, bool adaptive = false, double clTarget = -1 ) const; //bool RunAutoScan( double xMin, double xMax, double target, double epsilon=nullptr.005, unsigned int numAlgorithm=nullptr ); bool RunLimit(double &limit, double &limitErr, double absTol = 0, double relTol = 0, const double *hint=nullptr) const; void UseCLs( bool on = true) { fUseCLs = on; if (fResults) fResults->UseCLs(on); } void SetData(RooAbsData &) override; void SetModel(const ModelConfig &) override { } // not needed /// set the size of the test (rate of Type I error) ( Eg. 0.05 for a 95% Confidence Interval) void SetTestSize(double size) override {fSize = size; if (fResults) fResults->SetTestSize(size); } /// set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval) void SetConfidenceLevel(double cl) override {fSize = 1.-cl; if (fResults) fResults->SetConfidenceLevel(cl); } /// Get the size of the test (eg. rate of Type I error) double Size() const override {return fSize;} /// Get the Confidence level for the test double ConfidenceLevel() const override {return 1.-fSize;} /// destructor ~HypoTestInverter() override ; /// retrieved a reference to the internally used HypoTestCalculator /// it might be invalid when the class is deleted HypoTestCalculatorGeneric * GetHypoTestCalculator() const { return fCalculator0; } /// get the upper/lower limit distribution SamplingDistribution * GetLowerLimitDistribution(bool rebuild=false, int nToys = 100); SamplingDistribution * GetUpperLimitDistribution(bool rebuild=false, int nToys = 100); /// function to rebuild the distributions SamplingDistribution * RebuildDistributions(bool isUpper=true, int nToys = 100, TList *clsDist = nullptr, TList *clsbDist = nullptr, TList *clbDist = nullptr, const char *outputfile = "HypoTestInverterRebuiltDist.root"); /// get the test statistic TestStatistic * GetTestStatistic() const; /// set the test statistic bool SetTestStatistic(TestStatistic& stat); /// set verbose level (0,1,2) void SetVerbose(int level=1) { fVerbose = level; } /// set maximum number of toys void SetMaximumToys(int ntoys) { fMaxToys = ntoys;} /// set numerical error in test statistic evaluation (default is zero) void SetNumErr(double err) { fNumErr = err; } /// set flag to close proof for every new run static void SetCloseProof(bool flag); protected: /// copy c-tor HypoTestInverter(const HypoTestInverter & rhs); /// assignment HypoTestInverter & operator=(const HypoTestInverter & rhs); void CreateResults() const; /// run the hybrid at a single point HypoTestResult * Eval( HypoTestCalculatorGeneric &hc, bool adaptive , double clsTarget) const; /// helper functions static RooRealVar * GetVariableToScan(const HypoTestCalculatorGeneric &hc); static void CheckInputModels(const HypoTestCalculatorGeneric &hc, const RooRealVar & scanVar); private: static unsigned int fgNToys; static double fgCLAccuracy; static double fgAbsAccuracy; static double fgRelAccuracy; static bool fgCloseProof; static std::string fgAlgo; // graph, used to compute the limit, not just for plotting! mutable std::unique_ptr fLimitPlot; /// fHC; ///