// @(#)root/hist:$Id$ // Author: Maciej Zimnoch 30/09/2013 /************************************************************************* * Copyright (C) 1995-2013, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOT_TFormula #define ROOT_TFormula #include "TNamed.h" #include "TBits.h" #include "TInterpreter.h" #include #include #include #include #include #include #include class TMethodCall; class TFormulaFunction { public: TString fName; TString fBody; Int_t fNargs; Bool_t fFound; Bool_t fFuncCall; const char * GetName() const { return fName.Data(); } const char * GetBody() const { return fBody.Data(); } Int_t GetNargs() const { return fNargs;} Bool_t IsFuncCall() const { return fFuncCall;} TFormulaFunction(){} TFormulaFunction(const TString &name, const TString &body, int numArgs) : fName(name),fBody(body),fNargs(numArgs),fFound(false),fFuncCall(true) {} TFormulaFunction(const TString& name) : fName(name),fBody(""),fNargs(0),fFound(false),fFuncCall(false){} Bool_t operator<(const TFormulaFunction &rhv) const { // order by length - first the longer ones to avoid replacing wrong functions if ( fName.Length() < rhv.fName.Length() ) return true; else if ( fName.Length() > rhv.fName.Length() ) return false; // case of equal length return fName < rhv.fName && fBody < rhv.fBody; } Bool_t operator==(const TFormulaFunction &rhv) const { return fName == rhv.fName && fBody == rhv.fBody && fNargs == rhv.fNargs; } }; class TFormulaVariable { public: TString fName; Double_t fValue; Int_t fArrayPos; Bool_t fFound; const char * GetName() const { return fName.Data(); } Double_t GetInitialValue() const { return fValue; } Int_t GetArrayPos() const { return fArrayPos; } TFormulaVariable():fName(""),fValue(-1),fArrayPos(-1),fFound(false){} TFormulaVariable(const TString &name, Double_t value, Int_t pos) : fName(name), fValue(value), fArrayPos(pos),fFound(false) {} Bool_t operator<(const TFormulaVariable &rhv) const { return fName < rhv.fName; } }; struct TFormulaParamOrder { bool operator() (const TString& a, const TString& b) const; }; class TFormula : public TNamed { private: // All data members are transient apart from the string defining the formula and the parameter values TString fClingInput; /// fClingVariables; /// fClingParameters; ///< Parameter values Bool_t fReadyToExecute; /// fClingInitialized; /// fMethod; /// &substitutions); void FillParametrizedFunctions(std::map, std::pair> &functions); void FillVecFunctionsShurtCuts(); void ReInitializeEvalMethod(); std::string GetGradientFuncName() const { assert(fClingName.Length() && "TFormula is not initialized yet!"); return std::string(fClingName.Data()) + "_grad_1"; } std::string GetHessianFuncName() const { assert(fClingName.Length() && "TFormula is not initialized yet!"); return std::string(fClingName.Data()) + "_hessian_1"; } bool HasGradientGenerationFailed() const { return !fGradFuncPtr && !fGradGenerationInput.empty(); } bool HasHessianGenerationFailed() const { return !fHessFuncPtr && !fHessGenerationInput.empty(); } protected: std::list fFuncs; /// fVars; /// fParams; ///<|| List of parameter names std::map fConsts; /// fFunctionsShortcuts; /// fLinearParts; ///< Vector of linear functions Bool_t fVectorized = false; ///< Whether we should use vectorized or regular variables // (we default to false since a lot of functions still cannot be expressed in vectorized form) static Bool_t IsOperator(const char c); static Bool_t IsBracket(const char c); static Bool_t IsFunctionNameChar(const char c); static Bool_t IsScientificNotation(const TString & formula, int ipos); static Bool_t IsHexadecimal(const TString & formula, int ipos); static Bool_t IsAParameterName(const TString & formula, int ipos); void ExtractFunctors(TString &formula); void PreProcessFormula(TString &formula); void ProcessFormula(TString &formula); Bool_t PrepareFormula(TString &formula); void ReplaceParamName(TString &formula, const TString & oldname, const TString & name); void DoAddParameter(const TString &name, Double_t value, bool processFormula); void DoSetParameters(const Double_t * p, Int_t size); void SetPredefinedParamNames(); Double_t DoEval(const Double_t * x, const Double_t * p = nullptr) const; #ifdef R__HAS_VECCORE ROOT::Double_v DoEvalVec(const ROOT::Double_v *x, const Double_t *p = nullptr) const; #endif public: enum EStatusBits { kNotGlobal = BIT(10), ///< Don't store in gROOT->GetListOfFunction (it should be protected) kNormalized = BIT(14), ///< Set to true if the TFormula (ex gausn) is normalized kLinear = BIT(16), ///< Set to true if the TFormula is for linear fitting kLambda = BIT(17) ///< Set to true if TFormula has been build with a lambda }; using CladStorage = std::vector; TFormula(); ~TFormula() override; TFormula& operator=(const TFormula &rhs); TFormula(const char *name, const char * formula = "", bool addToGlobList = true, bool vectorize = false); TFormula(const char *name, const char * formula, int ndim, int npar, bool addToGlobList = true); TFormula(const TFormula &formula); // TFormula(const char *name, Int_t nparams, Int_t ndims); void AddParameter(const TString &name, Double_t value = 0) { DoAddParameter(name,value,true); } void AddVariable(const TString &name, Double_t value = 0); void AddVariables(const TString *vars, const Int_t size); Int_t Compile(const char *expression=""); void Copy(TObject &f1) const override; void Clear(Option_t * option="") override; Double_t Eval(Double_t x) const; Double_t Eval(Double_t x, Double_t y) const; Double_t Eval(Double_t x, Double_t y , Double_t z) const; Double_t Eval(Double_t x, Double_t y , Double_t z , Double_t t ) const; Double_t EvalPar(const Double_t *x, const Double_t *params = nullptr) const; /// Generate gradient computation routine with respect to the parameters. /// \returns true if a gradient was generated and GradientPar can be called. bool GenerateGradientPar(); /// Generate hessian computation routine with respect to the parameters. /// \returns true if a hessian was generated and HessianPar can be called. bool GenerateHessianPar(); /// Compute the gradient employing automatic differentiation. /// /// \param[in] x - The given variables, if nullptr the already stored /// variables are used. /// \param[out] result - The result of the computation wrt each direction. void GradientPar(const Double_t *x, TFormula::CladStorage& result); void GradientPar(const Double_t *x, Double_t *result); /// Compute the gradient employing automatic differentiation. /// /// \param[in] x - The given variables, if nullptr the already stored /// variables are used. /// \param[out] result - The 2D hessian matrix flattened to form a vector /// in row-major order. void HessianPar(const Double_t *x, TFormula::CladStorage& result); void HessianPar(const Double_t *x, Double_t *result); // query if TFormula provides gradient computation using AD (CLAD) bool HasGeneratedGradient() const { return fGradFuncPtr != nullptr; } // query if TFormula provides hessian computation using AD (CLAD) bool HasGeneratedHessian() const { return fHessFuncPtr != nullptr; } // template // T Eval(T x, T y = 0, T z = 0, T t = 0) const; template T EvalPar(const T *x, const Double_t *params = nullptr) const { return EvalParVec(x, params); } #ifdef R__HAS_VECCORE ROOT::Double_v EvalParVec(const ROOT::Double_v *x, const Double_t *params = nullptr) const; #endif TString GetExpFormula(Option_t *option="") const; TString GetGradientFormula() const; TString GetHessianFormula() const; const TObject *GetLinearPart(Int_t i) const; Int_t GetNdim() const {return fNdim;} Int_t GetNpar() const {return fNpar;} Int_t GetNumber() const { return fNumber; } const char * GetParName(Int_t ipar) const; Int_t GetParNumber(const char * name) const; Double_t GetParameter(const char * name) const; Double_t GetParameter(Int_t param) const; Double_t* GetParameters() const; void GetParameters(Double_t *params) const; Double_t GetVariable(const char *name) const; Int_t GetVarNumber(const char *name) const; TString GetVarName(Int_t ivar) const; Bool_t IsValid() const { return fReadyToExecute && fClingInitialized; } Bool_t IsVectorized() const { return fVectorized; } Bool_t IsLinear() const { return TestBit(kLinear); } void Print(Option_t *option = "") const override; void SetName(const char* name) override; void SetParameter(const char* name, Double_t value); void SetParameter(Int_t param, Double_t value); void SetParameters(const Double_t *params); //void SetParameters(const pair *params, const Int_t size); void SetParameters(Double_t p0,Double_t p1,Double_t p2=0,Double_t p3=0,Double_t p4=0, Double_t p5=0,Double_t p6=0,Double_t p7=0,Double_t p8=0, Double_t p9=0,Double_t p10=0); // *MENU* void SetParName(Int_t ipar, const char *name); void SetParNames(const char *name0="p0",const char *name1="p1",const char *name2="p2",const char *name3="p3",const char *name4="p4", const char *name5="p5",const char *name6="p6",const char *name7="p7",const char *name8="p8",const char *name9="p9",const char *name10="p10"); // *MENU* void SetVariable(const TString &name, Double_t value); void SetVariables(const std::pair *vars, const Int_t size); void SetVectorized(Bool_t vectorized); ClassDefOverride(TFormula,13) }; #endif