// @(#)root/tmva $Id$ // Author: Marcin Wolter, Andrzej Zemla /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : MethodSVM * * Web : http://tmva.sourceforge.net * * * * Description: * * Support Vector Machine * * * * Authors (alphabetical): * * Marcin Wolter - IFJ PAN, Krakow, Poland * * Andrzej Zemla - IFJ PAN, Krakow, Poland * * (IFJ PAN: Henryk Niewodniczanski Inst. Nucl. Physics, Krakow, Poland) * * * * Introduction of regression by: * * Krzysztof Danielowski - IFJ PAN & AGH, Krakow, Poland * * Kamil Kraszewski - IFJ PAN & UJ, Krakow, Poland * * Maciej Kruk - IFJ PAN & AGH, Krakow, Poland * * * * Copyright (c) 2005: * * CERN, Switzerland * * MPI-K Heidelberg, Germany * * PAN, Krakow, Poland * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_MethodSVM #define ROOT_TMVA_MethodSVM ////////////////////////////////////////////////////////////////////////// // // // MethodSVM // // // // SMO Platt's SVM classifier with Keerthi & Shavade improvements // // // ////////////////////////////////////////////////////////////////////////// #include "TMVA/MethodBase.h" #include "TMatrixDfwd.h" #include #include #include #ifndef ROOT_TMVA_TVectorD #include "TVectorD.h" #include "TMVA/SVKernelFunction.h" #endif namespace TMVA { class SVWorkingSet; class SVEvent; class SVKernelFunction; class MethodSVM : public MethodBase { public: MethodSVM( const TString& jobName, const TString& methodTitle, DataSetInfo& theData, const TString& theOption = "" ); MethodSVM( DataSetInfo& theData, const TString& theWeightFile); virtual ~MethodSVM( void ); virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets ); // optimise tuning parameters virtual std::map OptimizeTuningParameters(TString fomType="ROCIntegral", TString fitType="Minuit"); virtual void SetTuneParameters(std::map tuneParameters); std::vector MakeKernelList(std::string multiKernels, TString kernel); std::map< TString,std::vector > GetTuningOptions(); // training method void Train( void ); // revoke training (required for optimise tuning parameters) void Reset( void ); using MethodBase::ReadWeightsFromStream; // write weights to file void WriteWeightsToStream( TFile& fout ) const; void AddWeightsXMLTo ( void* parent ) const; // read weights from file void ReadWeightsFromStream( std::istream& istr ); void ReadWeightsFromStream( TFile& fFin ); void ReadWeightsFromXML ( void* wghtnode ); // calculate the MVA value Double_t GetMvaValue( Double_t* err = nullptr, Double_t* errUpper = nullptr ); const std::vector& GetRegressionValues(); void Init( void ); // ranking of input variables const Ranking* CreateRanking() { return nullptr; } // for SVM optimisation void SetGamma(Double_t g){fGamma = g;} void SetCost(Double_t c){fCost = c;} void SetMGamma(std::string & mg); void SetOrder(Double_t o){fOrder = o;} void SetTheta(Double_t t){fTheta = t;} void SetKappa(Double_t k){fKappa = k;} void SetMult(Double_t m){fMult = m;} void GetMGamma(const std::vector & gammas); protected: // make ROOT-independent C++ class for classifier response (classifier-specific implementation) void MakeClassSpecific( std::ostream&, const TString& ) const; // get help message text void GetHelpMessage() const; private: // the option handling methods void DeclareOptions(); void DeclareCompatibilityOptions(); void ProcessOptions(); Double_t getLoss( TString lossFunction ); Float_t fCost; ///< cost value Float_t fTolerance; ///< tolerance parameter UInt_t fMaxIter; ///< max number of iteration UShort_t fNSubSets; ///< nr of subsets, default 1 Float_t fBparm; ///< free plane coefficient Float_t fGamma; ///< RBF Kernel parameter SVWorkingSet* fWgSet; ///< svm working set std::vector* fInputData; ///< vector of training data in SVM format std::vector* fSupportVectors; ///< contains support vectors SVKernelFunction* fSVKernelFunction; ///< kernel function TVectorD* fMinVars; ///< for normalization //is it still needed?? TVectorD* fMaxVars; ///< for normalization //is it still needed?? // for kernel functions TString fTheKernel; ///< kernel name Float_t fDoubleSigmaSquared; ///< for RBF Kernel Int_t fOrder; ///< for Polynomial Kernel ( polynomial order ) Float_t fTheta; ///< for Sigmoidal Kernel Float_t fKappa; ///< for Sigmoidal Kernel Float_t fMult; std::vector fmGamma; ///< vector of gammas for multi-gaussian kernel Float_t fNumVars; ///< number of input variables for multi-gaussian std::vector fVarNames; std::string fGammas; std::string fGammaList; std::string fTune; ///< Specify parameters to be tuned std::string fMultiKernels; Int_t fDataSize; TString fLoss; ClassDef(MethodSVM,0); // Support Vector Machine }; } // namespace TMVA #endif // MethodSVM_H