// @(#)root/tmva $Id$ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : MethodTMlpANN * * Web : http://tmva.sourceforge.net * * * * Description: * * Implementation of interface for Root-integrated artificial neural * * network: TMultiLayerPerceptron, author: Christophe.Delaere@cern.ch * * for a manual, see * * http://root.cern.ch/root/html/TMultiLayerPerceptron.html * * * * Authors (alphabetical): * * Andreas Hoecker - CERN, Switzerland * * Helge Voss - MPI-K Heidelberg, Germany * * Kai Voss - U. of Victoria, Canada * * * * Copyright (c) 2005: * * CERN, Switzerland * * U. of Victoria, Canada * * MPI-K Heidelberg, Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_MethodTMlpANN #define ROOT_TMVA_MethodTMlpANN ////////////////////////////////////////////////////////////////////////// // // // MethodTMlpANN // // // // Implementation of interface for Root-integrated artificial neural // // network: TMultiLayerPerceptron // // // ////////////////////////////////////////////////////////////////////////// #include "TMVA/MethodBase.h" class TMultiLayerPerceptron; namespace TMVA { class MethodTMlpANN : public MethodBase { public: MethodTMlpANN( const TString& jobName, const TString& methodTitle, DataSetInfo& theData, const TString& theOption = "3000:N-1:N-2"); MethodTMlpANN( DataSetInfo& theData, const TString& theWeightFile); virtual ~MethodTMlpANN( void ); virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets ); // training method void Train( void ); using MethodBase::ReadWeightsFromStream; // write weights to file void AddWeightsXMLTo( void* parent ) const; // read weights from file void ReadWeightsFromStream( std::istream& istr ); void ReadWeightsFromXML(void* wghtnode); // calculate the MVA value ... // - here it is just a dummy, as it is done in the overwritten // - PrepareEvaluationtree... ugly but necessary due to the structure // of TMultiLayerPercepton in ROOT grr... :-( Double_t GetMvaValue( Double_t* err = nullptr, Double_t* errUpper = nullptr ); void SetHiddenLayer(TString hiddenlayer = "" ) { fHiddenLayer=hiddenlayer; } // ranking of input variables const Ranking* CreateRanking() { return nullptr; } // make ROOT-independent C++ class void MakeClass( const TString& classFileName = TString("") ) const; protected: // make ROOT-independent C++ class for classifier response (classifier-specific implementation) void MakeClassSpecific( std::ostream&, const TString& ) const; // get help message text void GetHelpMessage() const; private: // the option handling methods void DeclareOptions(); void ProcessOptions(); void CreateMLPOptions( TString ); // option string TString fLayerSpec; ///< Layer specification option TMultiLayerPerceptron* fMLP; ///< the TMLP TTree* fLocalTrainingTree; ///< local copy of training tree TString fHiddenLayer; ///< string containing the hidden layer structure Int_t fNcycles; ///< number of training cycles Double_t fValidationFraction; ///< fraction of events in training tree used for cross validation TString fMLPBuildOptions; ///< option string to build the mlp TString fLearningMethod; ///< the learning method (given via option string) // default initialisation called by all constructors void Init( void ); ClassDef(MethodTMlpANN,0); // Implementation of interface for TMultiLayerPerceptron }; } // namespace TMVA #endif