// @(#)root/quadp:$Id$ // Author: Eddy Offermann May 2004 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /************************************************************************* * Parts of this file are copied from the OOQP distribution and * * are subject to the following license: * * * * COPYRIGHT 2001 UNIVERSITY OF CHICAGO * * * * The copyright holder hereby grants you royalty-free rights to use, * * reproduce, prepare derivative works, and to redistribute this software* * to others, provided that any changes are clearly documented. This * * software was authored by: * * * * E. MICHAEL GERTZ gertz@mcs.anl.gov * * Mathematics and Computer Science Division * * Argonne National Laboratory * * 9700 S. Cass Avenue * * Argonne, IL 60439-4844 * * * * STEPHEN J. WRIGHT swright@cs.wisc.edu * * Computer Sciences Department * * University of Wisconsin * * 1210 West Dayton Street * * Madison, WI 53706 FAX: (608)262-9777 * * * * Any questions or comments may be directed to one of the authors. * * * * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF * * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND * * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT * * WITH THE DEPARTMENT OF ENERGY. * *************************************************************************/ #ifndef ROOT_TQpLinSolverBase #define ROOT_TQpLinSolverBase #include "TError.h" #include "TQpVar.h" #include "TQpDataBase.h" #include "TQpResidual.h" #include "TQpProbBase.h" #include "TMatrixD.h" /////////////////////////////////////////////////////////////////////////// // // // Implements the main solver for linear systems that arise in // // primal-dual interior-point methods for QP . This class contains // // definitions of methods and data common to the sparse and dense // // special cases of the general formulation. The derived classes contain // // the aspects that are specific to the sparse and dense forms. // // // /////////////////////////////////////////////////////////////////////////// class TQpProbBase; class TQpLinSolverBase : public TObject { protected: TVectorD fNomegaInv; // stores a critical diagonal matrix as a vector TVectorD fRhs; // right-hand side of the system Int_t fNx; // dimensions of the vectors in the general QP formulation Int_t fMy; Int_t fMz; TVectorD fDd; // temporary storage vectors TVectorD fDq; TVectorD fXupIndex; // index matrices for the upper and lower bounds on x and Cx TVectorD fCupIndex; TVectorD fXloIndex; TVectorD fCloIndex; Int_t fNxup; // dimensions of the upper and lower bound vectors Int_t fNxlo; Int_t fMcup; Int_t fMclo; TQpProbBase *fFactory; public: TQpLinSolverBase(); TQpLinSolverBase(TQpProbBase *factory,TQpDataBase *data); TQpLinSolverBase(const TQpLinSolverBase &another); ~TQpLinSolverBase() override {} virtual void Factor (TQpDataBase *prob,TQpVar *vars); // sets up the matrix for the main linear system in // "augmented system" form. The actual factorization is // performed by a routine specific to either the sparse // or dense case virtual void Solve (TQpDataBase *prob,TQpVar *vars,TQpResidual *resids,TQpVar *step); // solves the system for a given set of residuals. // Assembles the right-hand side appropriate to the // matrix factored in factor, solves the system using // the factorization produced there, partitions the // solution vector into step components, then recovers // the step components eliminated during the block // elimination that produced the augmented system form virtual void JoinRHS (TVectorD &rhs, TVectorD &rhs1,TVectorD &rhs2,TVectorD &rhs3); // assembles a single vector object from three given vectors // rhs (output) final joined vector // rhs1 (input) first part of rhs // rhs2 (input) middle part of rhs // rhs3 (input) last part of rhs virtual void SeparateVars (TVectorD &vars1,TVectorD &vars2,TVectorD &vars3,TVectorD &vars); // extracts three component vectors from a given aggregated // vector. // vars (input) aggregated vector // vars1 (output) first part of vars // vars2 (output) middle part of vars // vars3 (output) last part of vars virtual void SolveXYZS (TVectorD &stepx,TVectorD &stepy,TVectorD &stepz,TVectorD &steps, TVectorD &ztemp,TQpDataBase *data); // assemble right-hand side of augmented system and call // SolveCompressed to solve it virtual void SolveCompressed (TVectorD &rhs) = 0; // perform the actual solve using the factors produced in // factor. // rhs on input contains the aggregated right-hand side of // the augmented system; on output contains the solution in // aggregated form virtual void PutXDiagonal (TVectorD &xdiag) = 0; // places the diagonal resulting from the bounds on x into // the augmented system matrix virtual void PutZDiagonal (TVectorD& zdiag) = 0; // places the diagonal resulting from the bounds on Cx into // the augmented system matrix virtual void ComputeDiagonals(TVectorD &dd,TVectorD &omega,TVectorD &t, TVectorD &lambda, TVectorD &u, TVectorD &pi,TVectorD &v, TVectorD &gamma, TVectorD &w, TVectorD &phi); // computes the diagonal matrices in the augmented system // from the current set of variables TQpLinSolverBase &operator= (const TQpLinSolverBase &source); ClassDefOverride(TQpLinSolverBase,1) // Qp linear solver base class }; #endif