## \file ## \ingroup tutorial_dataframe ## \notebook -draw ## Show how to work with non-flat data models, e.g. vectors of tracks. ## ## This tutorial shows the possibility to use data models which are more ## complex than flat ntuples with RDataFrame. ## ## \macro_code ## \macro_image ## ## \date May 2017 ## \author Danilo Piparo (CERN) import ROOT # A simple helper function to fill a test tree: this makes the example stand-alone. fill_tree_code = ''' using FourVector = ROOT::Math::XYZTVector; using FourVectorVec = std::vector; using CylFourVector = ROOT::Math::RhoEtaPhiVector; // A simple helper function to fill a test tree: this makes the example // stand-alone. void fill_tree(const char *filename, const char *treeName) { const double M = 0.13957; // set pi+ mass TRandom3 R(1); auto genTracks = [&](){ FourVectorVec tracks; const auto nPart = R.Poisson(15); tracks.reserve(nPart); for (int j = 0; j < nPart; ++j) { const auto px = R.Gaus(0, 10); const auto py = R.Gaus(0, 10); const auto pt = sqrt(px * px + py * py); const auto eta = R.Uniform(-3, 3); const auto phi = R.Uniform(0.0, 2 * TMath::Pi()); CylFourVector vcyl(pt, eta, phi); // set energy auto E = sqrt(vcyl.R() * vcyl.R() + M * M); // fill track vector tracks.emplace_back(vcyl.X(), vcyl.Y(), vcyl.Z(), E); } return tracks; }; ROOT::RDataFrame d(64); d.Define("tracks", genTracks).Snapshot(treeName, filename, {"tracks"}); } ''' # We prepare an input tree to run on fileName = "df002_dataModel_py.root" treeName = "myTree" ROOT.gInterpreter.Declare(fill_tree_code) ROOT.fill_tree(fileName, treeName) # We read the tree from the file and create a RDataFrame, a class that # allows us to interact with the data contained in the tree. d = ROOT.RDataFrame(treeName, fileName) # Operating on branches which are collections of objects # Here we deal with the simplest of the cuts: we decide to accept the event # only if the number of tracks is greater than 8. n_cut = 'tracks.size() > 8' nentries = d.Filter(n_cut).Count(); print("%s events passed all filters" % nentries.GetValue()) # Another possibility consists in creating a new column containing the # quantity we are interested in. # In this example, we will cut on the number of tracks and plot their # transverse momentum. getPt_code =''' using namespace ROOT::VecOps; ROOT::RVecD getPt(const RVec &tracks) { auto pt = [](const FourVector &v) { return v.pt(); }; return Map(tracks, pt); } ''' ROOT.gInterpreter.Declare(getPt_code) getPtWeights_code =''' using namespace ROOT::VecOps; ROOT::RVecD getPtWeights(const RVec &tracks) { auto ptWeight = [](const FourVector &v) { return 1. / v.Pt(); }; return Map(tracks, ptWeight); }; ''' ROOT.gInterpreter.Declare(getPtWeights_code) augmented_d = d.Define('tracks_n', '(int)tracks.size()') \ .Filter('tracks_n > 2') \ .Define('tracks_pts', 'getPt( tracks )') \ .Define("tracks_pts_weights", 'getPtWeights( tracks )' ) # The histogram is initialised with a tuple containing the parameters of the # histogram trN = augmented_d.Histo1D(("", "", 40, -.5, 39.5), "tracks_n") trPts = augmented_d.Histo1D("tracks_pts") trWPts = augmented_d.Histo1D("tracks_pts", "tracks_pts_weights") c1 = ROOT.TCanvas() trN.Draw() c1.SaveAs("df002_trN.png") c2 = ROOT.TCanvas() trPts.Draw() c2.SaveAs("df002_trPts.png") c3 = ROOT.TCanvas() trWPts.Draw() c2.SaveAs("df002_trWPts.png") print("Saved figures to df002_*.png")