## \file ## \ingroup tutorial_dataframe ## \notebook -draw ## Process a CSV file with RDataFrame and the CSV data source. ## ## This tutorial illustrates how use the RDataFrame in combination with a ## RDataSource. In this case we use a TCsvDS. This data source allows to read ## a CSV file from a RDataFrame. ## As a result of running this tutorial, we will produce plots of the dimuon ## spectrum starting from a subset of the CMS collision events of Run2010B. ## Dataset Reference: ## McCauley, T. (2014). Dimuon event information derived from the Run2010B ## public Mu dataset. CERN Open Data Portal. ## DOI: [10.7483/OPENDATA.CMS.CB8H.MFFA](http://opendata.cern.ch/record/700). ## ## \macro_code ## \macro_image ## ## \date October 2017 ## \author Enric Tejedor (CERN) import ROOT import os # Let's first create a RDF that will read from the CSV file. # The types of the columns will be automatically inferred. fileNameUrl = "http://root.cern.ch/files/tutorials/df014_CsvDataSource_MuRun2010B.csv" fileName = "df014_CsvDataSource_MuRun2010B_py.csv" if not os.path.isfile(fileName): ROOT.TFile.Cp(fileNameUrl, fileName) df = ROOT.RDF.FromCSV(fileName) # Now we will apply a first filter based on two columns of the CSV, # and we will define a new column that will contain the invariant mass. # Note how the new invariant mass column is defined from several other # columns that already existed in the CSV file. filteredEvents = df.Filter("Q1 * Q2 == -1") \ .Define("m", "sqrt(pow(E1 + E2, 2) - (pow(px1 + px2, 2) + pow(py1 + py2, 2) + pow(pz1 + pz2, 2)))") # Next we create a histogram to hold the invariant mass values and we draw it. invMass = filteredEvents.Histo1D(("invMass", "CMS Opendata: #mu#mu mass;#mu#mu mass [GeV];Events", 512, 2, 110), "m") c = ROOT.TCanvas() c.SetLogx() c.SetLogy() invMass.Draw() c.SaveAs("df014_invMass.png") # We will now produce a plot also for the J/Psi particle. We will plot # on the same canvas the full spectrum and the zoom in on the J/psi particle. # First we will create the full spectrum histogram from the invariant mass # column, using a different histogram model than before. fullSpectrum = filteredEvents.Histo1D(("Spectrum", "Subset of CMS Run 2010B;#mu#mu mass [GeV];Events", 1024, 2, 110), "m") # Next we will create the histogram for the J/psi particle, applying first # the corresponding cut. jpsiLow = 2.95 jpsiHigh = 3.25 jpsiCut = 'm < %s && m > %s' % (jpsiHigh, jpsiLow) jpsi = filteredEvents.Filter(jpsiCut) \ .Histo1D(("jpsi", "Subset of CMS Run 2010B: J/#psi window;#mu#mu mass [GeV];Events", 128, jpsiLow, jpsiHigh), "m") # Finally we draw the two histograms side by side. dualCanvas = ROOT.TCanvas("DualCanvas", "DualCanvas", 800, 512) dualCanvas.Divide(2, 1) leftPad = dualCanvas.cd(1) leftPad.SetLogx() leftPad.SetLogy() fullSpectrum.Draw("Hist") dualCanvas.cd(2) jpsi.Draw("HistP") dualCanvas.SaveAs("df014_jpsi.png") print("Saved figures to df014_*.png")