/// \file /// \ingroup tutorial_math /// \notebook /// Example of using the TKDE class (kernel density estimator) /// /// \macro_image /// \macro_code /// /// \authors Lorenzo Moneta, Bartolomeu Rabacal (Dec 2010) #include "TH1.h" #include "TF1.h" #include "TKDE.h" #include "TCanvas.h" /*#include "TStopwatch.h"*/ #include "TRandom.h" #include "Math/DistFunc.h" #include "TLegend.h" // test TKDE void exampleTKDE(int n = 1000) { // generate some gaussian points int nbin = 100; double xmin = 0; double xmax = 10; TH1D * h1 = new TH1D("h1","h1",nbin,xmin,xmax); // generate some points with bi- gaussian distribution std::vector data(n); for (int i = 0; i < n; ++i) { if (i < 0.4*n) { data[i] = gRandom->Gaus(2,1); h1->Fill(data[i]); } else { data[i] = gRandom->Gaus(7,1.5); h1->Fill(data[i]); } } // scale histogram h1->Scale(1./h1->Integral(),"width" ); h1->SetStats(false); h1->SetTitle("Bi-Gaussian"); h1->Draw(); // drawn true normalized density TF1 * f1 = new TF1("f1","0.4*ROOT::Math::normal_pdf(x,1,2)+0.6*ROOT::Math::normal_pdf(x,1.5,7)",xmin,xmax); f1->SetLineColor(kGreen+2); f1->Draw("SAME"); // create TKDE class double rho = 1.0; //default value TKDE * kde = new TKDE(n, &data[0], xmin,xmax, "", rho); //kde->Draw("ConfidenceInterval@0.95 Same"); kde->Draw("SAME"); TLegend * legend = new TLegend(0.6,0.7,0.9,0.95); legend->AddEntry(f1,"True function"); legend->AddEntry(kde->GetDrawnFunction(),"TKDE"); legend->AddEntry(kde->GetDrawnLowerFunction(),"TKDE - #sigma"); legend->AddEntry(kde->GetDrawnUpperFunction(),"TKDE + #sigma"); legend->Draw(); }