/// \file /// \ingroup tutorial_math /// \notebook -nodraw /// Example on the usage of the adaptive 1D integration algorithm of MathMore /// it calculates the numerically cumulative integral of a distribution (like in this case the BreitWigner) /// to execute the macro type it (you need to compile with AClic) /// /// ~~~{.cpp} /// root[0] .x mathmoreIntegration.C+ /// ~~~ /// /// This tutorials require having libMathMore built with ROOT. /// /// To build mathmore you need to have a version of GSL >= 1.8 installed in your system /// The ROOT configure will automatically find GSL if the script gsl-config (from GSL) is in your PATH,. /// otherwise you need to configure root with the options --gsl-incdir and --gsl-libdir. /// /// \macro_image /// \macro_output /// \macro_code /// /// \authors M. Slawinska, L. Moneta #include "TMath.h" #include "TH1.h" #include "TCanvas.h" #include "TLegend.h" /*#include "TLabel.h"*/ #include "Math/Functor.h" #include "Math/WrappedFunction.h" #include "Math/IFunction.h" #include "Math/Integrator.h" #include #include "TStopwatch.h" #include "TF1.h" #include //!calculates exact integral of Breit Wigner distribution //!and compares with existing methods int nc = 0; double exactIntegral( double a, double b) { return (TMath::ATan(2*b)- TMath::ATan(2*a))/ TMath::Pi(); } double func( double x){ nc++; return TMath::BreitWigner(x); } // TF1 requires the function to have the ( )( double *, double *) signature double func2(const double *x, const double * = nullptr){ nc++; return TMath::BreitWigner(x[0]); } void testIntegPerf(double x1, double x2, int n = 100000){ std::cout << "\n\n***************************************************************\n"; std::cout << "Test integration performances in interval [ " << x1 << " , " << x2 << " ]\n\n"; TStopwatch timer; double dx = (x2-x1)/double(n); //ROOT::Math::Functor1D f1(& TMath::BreitWigner); ROOT::Math::WrappedFunction<> f1(func); timer.Start(); ROOT::Math::Integrator ig(f1 ); double s1 = 0.0; nc = 0; for (int i = 0; i < n; ++i) { double x = x1 + dx*i; s1+= ig.Integral(x1,x); } timer.Stop(); std::cout << "Time using ROOT::Math::Integrator :\t" << timer.RealTime() << std::endl; std::cout << "Number of function calls = " << nc/n << std::endl; int pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr); //TF1 *fBW = new TF1("fBW","TMath::BreitWigner(x)",x1, x2); // this is faster but cannot measure number of function calls TF1 *fBW = new TF1("fBW",func2,x1, x2,0); timer.Start(); nc = 0; double s2 = 0; for (int i = 0; i < n; ++i) { double x = x1 + dx*i; s2+= fBW->Integral(x1,x ); } timer.Stop(); std::cout << "Time using TF1::Integral :\t\t\t" << timer.RealTime() << std::endl; std::cout << "Number of function calls = " << nc/n << std::endl; pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr); } void DrawCumulative(double x1, double x2, int n = 100){ std::cout << "\n\n***************************************************************\n"; std::cout << "Drawing cumulatives of BreitWigner in interval [ " << x1 << " , " << x2 << " ]\n\n"; double dx = (x2-x1)/double(n); TH1D *cum0 = new TH1D("cum0", "", n, x1, x2); //exact cumulative for (int i = 1; i <= n; ++i) { double x = x1 + dx*i; cum0->SetBinContent(i, exactIntegral(x1, x)); } // alternative method using ROOT::Math::Functor class ROOT::Math::Functor1D f1(& func); ROOT::Math::Integrator ig(f1, ROOT::Math::IntegrationOneDim::kADAPTIVE,1.E-12,1.E-12); TH1D *cum1 = new TH1D("cum1", "", n, x1, x2); for (int i = 1; i <= n; ++i) { double x = x1 + dx*i; cum1->SetBinContent(i, ig.Integral(x1,x)); } TF1 *fBW = new TF1("fBW","TMath::BreitWigner(x, 0, 1)",x1, x2); TH1D *cum2 = new TH1D("cum2", "", n, x1, x2); for (int i = 1; i <= n; ++i) { double x = x1 + dx*i; cum2->SetBinContent(i, fBW->Integral(x1,x)); } TH1D *cum10 = new TH1D("cum10", "", n, x1, x2); //difference between 1 and exact TH1D *cum20 = new TH1D("cum23", "", n, x1, x2); //difference between 2 and excact for (int i = 1; i <= n; ++i) { double delta = cum1->GetBinContent(i) - cum0->GetBinContent(i); double delta2 = cum2->GetBinContent(i) - cum0->GetBinContent(i); //std::cout << " diff for " << x << " is " << delta << " " << cum1->GetBinContent(i) << std::endl; cum10->SetBinContent(i, delta ); cum10->SetBinError(i, std::numeric_limits::epsilon() * cum1->GetBinContent(i) ); cum20->SetBinContent(i, delta2 ); } TCanvas *c1 = new TCanvas("c1","Integration example",20,10,800,500); c1->Divide(2,1); c1->Draw(); cum0->SetLineColor(kBlack); cum0->SetTitle("BreitWigner - the cumulative"); cum0->SetStats(false); cum1->SetLineStyle(2); cum2->SetLineStyle(3); cum1->SetLineColor(kBlue); cum2->SetLineColor(kRed); c1->cd(1); cum0->DrawCopy("h"); cum1->DrawCopy("same"); //cum2->DrawCopy("same"); cum2->DrawCopy("same"); c1->cd(2); cum10->SetTitle("Difference"); cum10->SetStats(false); cum10->SetLineColor(kBlue); cum10->Draw("e0"); cum20->SetLineColor(kRed); cum20->Draw("hsame"); TLegend * l = new TLegend(0.11, 0.8, 0.7 ,0.89); l->AddEntry(cum10, "GSL integration - analytical "); l->AddEntry(cum20, "TF1::Integral - analytical "); l->Draw(); c1->Update(); std::cout << "\n***************************************************************\n"; } void mathmoreIntegration(double a = -2, double b = 2) { DrawCumulative(a, b); testIntegPerf(a, b); }