## \file ## \ingroup tutorial_roofit ## \notebook ## Addition and convolution: setting up an extended maximum likelihood fit ## ## \macro_image ## \macro_code ## \macro_output ## ## \date February 2018 ## \authors Clemens Lange, Wouter Verkerke (C++ version) import ROOT # Set up component pdfs # --------------------------------------- # Declare observable x x = ROOT.RooRealVar("x", "x", 0, 10) # Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and # their parameters mean = ROOT.RooRealVar("mean", "mean of gaussians", 5) sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5) sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1) sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2) # Build Chebychev polynomial pdf a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0) a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0.0, 1.0) bkg = ROOT.RooChebychev("bkg", "Background", x, [a0, a1]) # Sum the signal components into a composite signal pdf sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0) sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], [sig1frac]) # Method 1 - Construct extended composite model # ------------------------------------------------------------------- # Sum the composite signal and background into an extended pdf # nsig*sig+nbkg*bkg nsig = ROOT.RooRealVar("nsig", "number of signal events", 500, 0.0, 10000) nbkg = ROOT.RooRealVar("nbkg", "number of background events", 500, 0, 10000) model = ROOT.RooAddPdf("model", "(g1+g2)+a", [bkg, sig], [nbkg, nsig]) # Sample, fit and plot extended model # --------------------------------------------------------------------- # Generate a data sample of expected number events in x from model # = model.expectedEvents() = nsig+nbkg data = model.generate({x}) # Fit model to data, ML term automatically included model.fitTo(data, PrintLevel=-1) # Plot data and PDF overlaid, expected number of events for pdf projection normalization # rather than observed number of events (==data.numEntries()) xframe = x.frame(Title="extended ML fit example") data.plotOn(xframe) model.plotOn(xframe, Normalization=dict(scaleFactor=1.0, scaleType=ROOT.RooAbsReal.RelativeExpected)) # Overlay the background component of model with a dashed line model.plotOn( xframe, Components={bkg}, LineStyle=":", Normalization=dict(scaleFactor=1.0, scaleType=ROOT.RooAbsReal.RelativeExpected), ) # Overlay the background+sig2 components of model with a dotted line ras_bkg_sig2 = {bkg, sig2} model.plotOn( xframe, Components=ras_bkg_sig2, LineStyle=":", Normalization=dict(scaleFactor=1.0, scaleType=ROOT.RooAbsReal.RelativeExpected), ) # Print structure of composite pdf model.Print("t") # Method 2 - Construct extended components first # --------------------------------------------------------------------- # Associated nsig/nbkg as expected number of events with sig/bkg esig = ROOT.RooExtendPdf("esig", "extended signal pdf", sig, nsig) ebkg = ROOT.RooExtendPdf("ebkg", "extended background pdf", bkg, nbkg) # Sum extended components without coefs # ------------------------------------------------------------------------- # Construct sum of two extended pdf (no coefficients required) model2 = ROOT.RooAddPdf("model2", "(g1+g2)+a", [ebkg, esig]) # Draw the frame on the canvas c = ROOT.TCanvas("rf202_extendedmlfit", "rf202_extendedmlfit", 600, 600) ROOT.gPad.SetLeftMargin(0.15) xframe.GetYaxis().SetTitleOffset(1.4) xframe.Draw() c.SaveAs("rf202_extendedmlfit.png")