## \file ## \ingroup tutorial_roofit ## \notebook ## Extended maximum likelihood fit in multiple ranges. ## ## \macro_code ## \macro_output ## ## \date March 2021 ## \authors Harshal Shende, Stephan Hageboeck (C++ version) import ROOT # Setup component pdfs # --------------------- # Declare observable x x = ROOT.RooRealVar("x", "x", 0, 11) # Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters mean = ROOT.RooRealVar("mean", "mean of gaussians", 5) sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5) sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1) sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2) # Build Chebychev polynomial pdf a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0) a1 = ROOT.RooRealVar("a1", "a1", 0.2, 0.0, 1.0) bkg = ROOT.RooChebychev("bkg", "Background", x, [a0, a1]) # Sum the signal components into a composite signal pdf sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0) sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], sig1frac) # Extend the pdfs # ----------------------------- # Define signal range in which events counts are to be defined x.setRange("signalRange", 4, 6) # Associated nsig/nbkg as expected number of events with sig/bkg _in_the_range_ "signalRange" nsig = ROOT.RooRealVar("nsig", "number of signal events in signalRange", 500, 0.0, 10000) nbkg = ROOT.RooRealVar("nbkg", "number of background events in signalRange", 500, 0, 10000) # Use AddPdf to extend the model. Giving as many coefficients as pdfs switches on extension. model = ROOT.RooAddPdf("model", "(g1+g2)+a", [bkg, sig], [nbkg, nsig]) # Sample data, fit model # ------------------------------------------- # Generate 1000 events from model so that nsig,nbkg come out to numbers <<500 in fit data = model.generate(x, 1000) canv = ROOT.TCanvas("Canvas", "Canvas", 1500, 600) canv.Divide(3, 1) # Fit full range # ------------------------------------------- # Perform unbinned ML fit to data, full range # IMPORTANT: # The model needs to be copied when fitting with different ranges because # the interpretation of the coefficients is tied to the fit range # that's used in the first fit canv.cd(1) model1 = ROOT.RooAddPdf(model) r = model1.fitTo(data, Save=True, PrintLevel=-1) r.Print() frame = x.frame(Title="Full range fitted") data.plotOn(frame) model1.plotOn(frame, VisualizeError=r) model1.plotOn(frame) model1.paramOn(frame) frame.Draw() # Fit in two regions # ------------------------------------------- canv.cd(2) x.setRange("left", 0.0, 4.0) x.setRange("right", 6.0, 10.0) model2 = ROOT.RooAddPdf(model) r2 = model2.fitTo(data, Range="left,right", Save=True, PrintLevel=-1) r2.Print() frame2 = x.frame(Title="Fit in left/right sideband") data.plotOn(frame2) model2.plotOn(frame2, VisualizeError=r2) model2.plotOn(frame2) model2.paramOn(frame2) frame2.Draw() # Fit in one region # ------------------------------------------- # Note how restricting the region to only the left tail increases # the fit uncertainty canv.cd(3) x.setRange("leftToMiddle", 0.0, 5.0) model3 = ROOT.RooAddPdf(model) r3 = model3.fitTo(data, Range="leftToMiddle", Save=True, PrintLevel=-1) r3.Print() frame3 = x.frame(Title="Fit from left to middle") data.plotOn(frame3) model3.plotOn(frame3, VisualizeError=r3) model3.plotOn(frame3) model3.paramOn(frame3) frame3.Draw() canv.Draw() canv.SaveAs("rf204a_extendedLikelihood.png")