## \file ## \ingroup tutorial_roofit ## \notebook ## Addition and convolution: options for plotting components of composite pdfs. ## ## \macro_image ## \macro_code ## \macro_output ## ## \date February 2018 ## \authors Clemens Lange, Wouter Verkerke (C++ version) import ROOT # Set up composite pdf # -------------------------------------- # Declare observable x x = ROOT.RooRealVar("x", "x", 0, 10) # Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and # their parameters mean = ROOT.RooRealVar("mean", "mean of gaussians", 5) sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5) sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1) sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2) # Sum the signal components into a composite signal pdf sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0) sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], [sig1frac]) # Build Chebychev polynomial pdf a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0) a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0.0, 1.0) bkg1 = ROOT.RooChebychev("bkg1", "Background 1", x, [a0, a1]) # Build expontential pdf alpha = ROOT.RooRealVar("alpha", "alpha", -1) bkg2 = ROOT.RooExponential("bkg2", "Background 2", x, alpha) # Sum the background components into a composite background pdf bkg1frac = ROOT.RooRealVar("bkg1frac", "fraction of component 1 in background", 0.8, 0.0, 1.0) bkg = ROOT.RooAddPdf("bkg", "Total background", [bkg1, bkg2], [bkg1frac]) # Sum the composite signal and background bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0.0, 1.0) model = ROOT.RooAddPdf("model", "g1+g2+a", [bkg, sig], [bkgfrac]) # Set up basic plot with data and full pdf # ------------------------------------------------------------------------------ # Generate a data sample of 1000 events in x from model data = model.generate({x}, 1000) # Plot data and complete PDF overlaid xframe = x.frame(Title="Component plotting of pdf=(sig1+sig2)+(bkg1+bkg2)") data.plotOn(xframe) model.plotOn(xframe) # Clone xframe for use below xframe2 = xframe.Clone("xframe2") # Make component by object reference # -------------------------------------------------------------------- # Plot single background component specified by object reference ras_bkg = {bkg} model.plotOn(xframe, Components=ras_bkg, LineColor="r") # Plot single background component specified by object reference ras_bkg2 = {bkg2} model.plotOn(xframe, Components=ras_bkg2, LineStyle="--", LineColor="r") # Plot multiple background components specified by object reference # Note that specified components may occur at any level in object tree # (e.g bkg is component of 'model' and 'sig2' is component 'sig') ras_bkg_sig2 = {bkg, sig2} model.plotOn(xframe, Components=ras_bkg_sig2, LineStyle=":") # Make component by name/regexp # ------------------------------------------------------------ # Plot single background component specified by name model.plotOn(xframe2, Components="bkg", LineColor="c") # Plot multiple background components specified by name model.plotOn(xframe2, Components="bkg1,sig2", LineStyle=":", LineColor="c") # Plot multiple background components specified by regular expression on # name model.plotOn(xframe2, Components="sig*", LineStyle="--", LineColor="c") # Plot multiple background components specified by multiple regular # expressions on name model.plotOn(xframe2, Invisible=True, Components="bkg1,sig*", LineStyle="--", LineColor="y") # Draw the frame on the canvas c = ROOT.TCanvas("rf205_compplot", "rf205_compplot", 800, 400) c.Divide(2) c.cd(1) ROOT.gPad.SetLeftMargin(0.15) xframe.GetYaxis().SetTitleOffset(1.4) xframe.Draw() c.cd(2) ROOT.gPad.SetLeftMargin(0.15) xframe2.GetYaxis().SetTitleOffset(1.4) xframe2.Draw() c.SaveAs("rf205_compplot.png")