## \file ## \ingroup tutorial_roofit ## \notebook ## Multidimensional models: projecting pdf and data slices in discrete observables ## ## \macro_image ## \macro_code ## \macro_output ## ## \date February 2018 ## \authors Clemens Lange, Wouter Verkerke (C++ version) import ROOT # Create B decay pdf with mixing # ---------------------------------------------------------- # Decay time observables dt = ROOT.RooRealVar("dt", "dt", -20, 20) # Discrete observables mixState (B0tag==B0reco?) and tagFlav # (B0tag==B0(bar)?) # Define state labels of discrete observables mixState = ROOT.RooCategory("mixState", "B0/B0bar mixing state", {"mixed": -1, "unmixed": 1}) tagFlav = ROOT.RooCategory("tagFlav", "Flavour of the tagged B0", {"B0": 1, "B0bar": -1}) # Model parameters dm = ROOT.RooRealVar("dm", "delta m(B)", 0.472, 0.0, 1.0) tau = ROOT.RooRealVar("tau", "B0 decay time", 1.547, 1.0, 2.0) w = ROOT.RooRealVar("w", "Flavor Mistag rate", 0.03, 0.0, 1.0) dw = ROOT.RooRealVar("dw", "Flavor Mistag rate difference between B0 and B0bar", 0.01) # Build a gaussian resolution model bias1 = ROOT.RooRealVar("bias1", "bias1", 0) sigma1 = ROOT.RooRealVar("sigma1", "sigma1", 0.01) gm1 = ROOT.RooGaussModel("gm1", "gauss model 1", dt, bias1, sigma1) # Construct a decay pdf, with single gaussian resolution model bmix_gm1 = ROOT.RooBMixDecay("bmix", "decay", dt, mixState, tagFlav, tau, dm, w, dw, gm1, type="DoubleSided") # Generate BMixing data with above set of event errors data = bmix_gm1.generate({dt, tagFlav, mixState}, 20000) # Plot full decay distribution # ---------------------------------------------------------- # Create frame, data and pdf projection (integrated over tagFlav and # mixState) frame = dt.frame(Title="Inclusive decay distribution") data.plotOn(frame) bmix_gm1.plotOn(frame) # Plot decay distribution for mixed and unmixed slice of mixState # ------------------------------------------------------------------------------------------- # Create frame, data (mixed only) frame2 = dt.frame(Title="Decay distribution of mixed events") data.plotOn(frame2, Cut="mixState==mixState::mixed") # Position slice in mixState at "mixed" and plot slice of pdf in mixstate # over data (integrated over tagFlav) bmix_gm1.plotOn(frame2, Slice=(mixState, "mixed")) # Create frame, data (unmixed only) frame3 = dt.frame(Title="Decay distribution of unmixed events") data.plotOn(frame3, Cut="mixState==mixState::unmixed") # Position slice in mixState at "unmixed" and plot slice of pdf in # mixstate over data (integrated over tagFlav) bmix_gm1.plotOn(frame3, Slice=(mixState, "unmixed")) c = ROOT.TCanvas("rf310_sliceplot", "rf310_sliceplot", 1200, 400) c.Divide(3) c.cd(1) ROOT.gPad.SetLeftMargin(0.15) frame.GetYaxis().SetTitleOffset(1.4) ROOT.gPad.SetLogy() frame.Draw() c.cd(2) ROOT.gPad.SetLeftMargin(0.15) frame2.GetYaxis().SetTitleOffset(1.4) ROOT.gPad.SetLogy() frame2.Draw() c.cd(3) ROOT.gPad.SetLeftMargin(0.15) frame3.GetYaxis().SetTitleOffset(1.4) ROOT.gPad.SetLogy() frame3.Draw() c.SaveAs("rf310_sliceplot.png")