## \file ## \ingroup tutorial_roofit ## \notebook -nodraw ## Data and categories: latex printing of lists and sets of RooArgSets ## ## \macro_code ## \macro_output ## ## \date February 2018 ## \authors Clemens Lange, Wouter Verkerke (C++ version) import ROOT # Setup composite pdf # -------------------------------------- # Declare observable x x = ROOT.RooRealVar("x", "x", 0, 10) # Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and # their parameters mean = ROOT.RooRealVar("mean", "mean of gaussians", 5) sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5) sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1) sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2) # Sum the signal components into a composite signal pdf sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0) sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], [sig1frac]) # Build Chebychev polynomial pdf a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0) a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0.0, 1.0) bkg1 = ROOT.RooChebychev("bkg1", "Background 1", x, [a0, a1]) # Build expontential pdf alpha = ROOT.RooRealVar("alpha", "alpha", -1) bkg2 = ROOT.RooExponential("bkg2", "Background 2", x, alpha) # Sum the background components into a composite background pdf bkg1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in background", 0.2, 0.0, 1.0) bkg = ROOT.RooAddPdf("bkg", "Signal", [bkg1, bkg2], [sig1frac]) # Sum the composite signal and background bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0.0, 1.0) model = ROOT.RooAddPdf("model", "g1+g2+a", [bkg, sig], [bkgfrac]) # Make list of parameters before and after fit # ---------------------------------------------------------------------------------------- # Make list of model parameters params = model.getParameters({x}) # Save snapshot of prefit parameters initParams = params.snapshot() # Do fit to data, obtain error estimates on parameters data = model.generate({x}, 1000) model.fitTo(data, PrintLevel=-1) # Print LateX table of parameters of pdf # -------------------------------------------------------------------------- # Print parameter list in LaTeX for (one column with names, column with # values) params.printLatex() # Print parameter list in LaTeX for (names values|names values) params.printLatex(Columns=2) # Print two parameter lists side by side (name values initvalues) params.printLatex(Sibling=initParams) # Print two parameter lists side by side (name values initvalues|name # values initvalues) params.printLatex(Sibling=initParams, Columns=2) # Write LaTex table to file params.printLatex(Sibling=initParams, OutputFile="rf407_latextables.tex")