## \file ## \ingroup tutorial_roofit ## \notebook -nodraw ## Organization and simultaneous fits: creating and writing a workspace ## ## \macro_code ## \macro_output ## ## \date February 2018 ## \authors Clemens Lange, Wouter Verkerke (C++ version) import ROOT # Create model and dataset # ----------------------------------------------- # Declare observable x x = ROOT.RooRealVar("x", "x", 0, 10) # Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and # their parameters mean = ROOT.RooRealVar("mean", "mean of gaussians", 5, 0, 10) sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5) sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1) sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1) sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2) # Build Chebychev polynomial pdf a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0.0, 1.0) a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0.0, 1.0) bkg = ROOT.RooChebychev("bkg", "Background", x, [a0, a1]) # Sum the signal components into a composite signal pdf sig1frac = ROOT.RooRealVar("sig1frac", "fraction of component 1 in signal", 0.8, 0.0, 1.0) sig = ROOT.RooAddPdf("sig", "Signal", [sig1, sig2], [sig1frac]) # Sum the composite signal and background bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0.0, 1.0) model = ROOT.RooAddPdf("model", "g1+g2+a", [bkg, sig], [bkgfrac]) # Generate a data sample of 1000 events in x from model data = model.generate({x}, 1000) # Create workspace, import data and model # ----------------------------------------------------------------------------- # Create a empty workspace w = ROOT.RooWorkspace("w", "workspace") # Import model and all its components into the workspace w.Import(model) # Import data into the workspace w.Import(data) # Print workspace contents w.Print() # Save workspace in file # ------------------------------------------- # Save the workspace into a ROOT file w.writeToFile("rf502_workspace_py.root")