## \file ## \ingroup tutorial_roofit ## \notebook ## Special pdf's: using non-parametric (multi-dimensional) kernel estimation pdfs ## ## \macro_image ## \macro_code ## \macro_output ## ## \date February 2018 ## \authors Clemens Lange, Wouter Verkerke (C++ version) import ROOT # Create low stats 1D dataset # ------------------------------------------------------- # Create a toy pdf for sampling x = ROOT.RooRealVar("x", "x", 0, 20) p = ROOT.RooPolynomial("p", "p", x, [0.01, -0.01, 0.0004]) # Sample 500 events from p data1 = p.generate({x}, 200) # Create 1D kernel estimation pdf # --------------------------------------------------------------- # Create adaptive kernel estimation pdf. In self configuration the input data # is mirrored over the boundaries to minimize edge effects in distribution # that do not fall to zero towards the edges kest1 = ROOT.RooKeysPdf("kest1", "kest1", x, data1, ROOT.RooKeysPdf.MirrorBoth) # An adaptive kernel estimation pdf on the same data without mirroring option # for comparison kest2 = ROOT.RooKeysPdf("kest2", "kest2", x, data1, ROOT.RooKeysPdf.NoMirror) # Adaptive kernel estimation pdf with increased bandwidth scale factor # (promotes smoothness over detail preservation) kest3 = ROOT.RooKeysPdf("kest1", "kest1", x, data1, ROOT.RooKeysPdf.MirrorBoth, 2) # Plot kernel estimation pdfs with and without mirroring over data frame = x.frame(Title="Adaptive kernel estimation pdf with and w/o mirroring", Bins=20) data1.plotOn(frame) kest1.plotOn(frame) kest2.plotOn(frame, LineStyle="--", LineColor="r") # Plot kernel estimation pdfs with regular and increased bandwidth frame2 = x.frame(Title="Adaptive kernel estimation pdf with regular, bandwidth") kest1.plotOn(frame2) kest3.plotOn(frame2, LineColor="m") # Create low status 2D dataset # ------------------------------------------------------- # Construct a 2D toy pdf for sampleing y = ROOT.RooRealVar("y", "y", 0, 20) py = ROOT.RooPolynomial( "py", "py", y, [0.01, 0.01, -0.0004], ) pxy = ROOT.RooProdPdf("pxy", "pxy", [p, py]) data2 = pxy.generate({x, y}, 1000) # Create 2D kernel estimation pdf # --------------------------------------------------------------- # Create 2D adaptive kernel estimation pdf with mirroring kest4 = ROOT.RooNDKeysPdf("kest4", "kest4", [x, y], data2, "am") # Create 2D adaptive kernel estimation pdf with mirroring and double # bandwidth kest5 = ROOT.RooNDKeysPdf("kest5", "kest5", [x, y], data2, "am", 2) # Create a histogram of the data hh_data = data2.createHistogram("hh_data", x, Binning=10, YVar=dict(var=y, Binning=10)) # Create histogram of the 2d kernel estimation pdfs hh_pdf = kest4.createHistogram("hh_pdf", x, Binning=25, YVar=dict(var=y, Binning=25)) hh_pdf2 = kest5.createHistogram("hh_pdf2", x, Binning=25, YVar=dict(var=y, Binning=25)) hh_pdf.SetLineColor(ROOT.kBlue) hh_pdf2.SetLineColor(ROOT.kMagenta) c = ROOT.TCanvas("rf707_kernelestimation", "rf707_kernelestimation", 800, 800) c.Divide(2, 2) c.cd(1) ROOT.gPad.SetLeftMargin(0.15) frame.GetYaxis().SetTitleOffset(1.4) frame.Draw() c.cd(2) ROOT.gPad.SetLeftMargin(0.15) frame2.GetYaxis().SetTitleOffset(1.8) frame2.Draw() c.cd(3) ROOT.gPad.SetLeftMargin(0.15) hh_data.GetZaxis().SetTitleOffset(1.4) hh_data.Draw("lego") c.cd(4) ROOT.gPad.SetLeftMargin(0.20) hh_pdf.GetZaxis().SetTitleOffset(2.4) hh_pdf.Draw("surf") hh_pdf2.Draw("surfsame") c.SaveAs("rf707_kernelestimation.png")