/// \file /// \ingroup tutorial_roostats /// \notebook -js /// 'Number Counting Example' RooStats tutorial macro #100 /// /// This tutorial shows an example of a combination of /// two searches using number counting with background uncertainty. /// /// The macro uses a RooStats "factory" to construct a PDF /// that represents the two number counting analyses with background /// uncertainties. The uncertainties are taken into account by /// considering a sideband measurement of a size that corresponds to the /// background uncertainty. The problem has been studied in these references: /// - http://arxiv.org/abs/physics/0511028 /// - http://arxiv.org/abs/physics/0702156 /// - http://cdsweb.cern.ch/record/1099969?ln=en /// /// After using the factory to make the model, we use a RooStats /// ProfileLikelihoodCalculator for a Hypothesis test and a confidence interval. /// The calculator takes into account systematics by eliminating nuisance parameters /// with the profile likelihood. This is equivalent to the method of MINOS. /// /// /// \macro_image /// \macro_output /// \macro_code /// /// \author Kyle Cranmer #include "RooStats/ProfileLikelihoodCalculator.h" #include "RooStats/NumberCountingPdfFactory.h" #include "RooStats/ConfInterval.h" #include "RooStats/HypoTestResult.h" #include "RooStats/LikelihoodIntervalPlot.h" #include "RooRealVar.h" #include // use this order for safety on library loading using namespace RooFit; using namespace RooStats; // declare three variations on the same tutorial void rs_numberCountingCombination_expected(); void rs_numberCountingCombination_observed(); void rs_numberCountingCombination_observedWithTau(); // ------------------------------- // main driver to choose one void rs_numberCountingCombination(int flag = 1) { if (flag == 1) rs_numberCountingCombination_expected(); if (flag == 2) rs_numberCountingCombination_observed(); if (flag == 3) rs_numberCountingCombination_observedWithTau(); } // ------------------------------- void rs_numberCountingCombination_expected() { ///////////////////////////////////////// // An example of a number counting combination with two channels. // We consider both hypothesis testing and the equivalent confidence interval. ///////////////////////////////////////// ///////////////////////////////////////// // The Model building stage ///////////////////////////////////////// // Step 1, define arrays with signal & bkg expectations and background uncertainties Double_t s[2] = {20., 10.}; // expected signal Double_t b[2] = {100., 100.}; // expected background Double_t db[2] = {.0100, .0100}; // fractional background uncertainty // Step 2, use a RooStats factory to build a PDF for a // number counting combination and add it to the workspace. // We need to give the signal expectation to relate the masterSignal // to the signal contribution in the individual channels. // The model neglects correlations in background uncertainty, // but they could be added without much change to the example. NumberCountingPdfFactory f; RooWorkspace *wspace = new RooWorkspace(); f.AddModel(s, 2, wspace, "TopLevelPdf", "masterSignal"); // Step 3, use a RooStats factory to add datasets to the workspace. // Step 3a. // Add the expected data to the workspace f.AddExpData(s, b, db, 2, wspace, "ExpectedNumberCountingData"); // see below for a printout of the workspace // wspace->Print(); //uncomment to see structure of workspace ///////////////////////////////////////// // The Hypothesis testing stage: ///////////////////////////////////////// // Step 4, Define the null hypothesis for the calculator // Here you need to know the name of the variables corresponding to hypothesis. RooRealVar *mu = wspace->var("masterSignal"); RooArgSet *poi = new RooArgSet(*mu); RooArgSet *nullParams = new RooArgSet("nullParams"); nullParams->addClone(*mu); // here we explicitly set the value of the parameters for the null nullParams->setRealValue("masterSignal", 0); // Step 5, Create a calculator for doing the hypothesis test. // because this is a ProfileLikelihoodCalculator plc(*wspace->data("ExpectedNumberCountingData"), *wspace->pdf("TopLevelPdf"), *poi, 0.05, nullParams); // Step 6, Use the Calculator to get a HypoTestResult HypoTestResult *htr = plc.GetHypoTest(); assert(htr != 0); cout << "-------------------------------------------------" << endl; cout << "The p-value for the null is " << htr->NullPValue() << endl; cout << "Corresponding to a significance of " << htr->Significance() << endl; cout << "-------------------------------------------------\n\n" << endl; /* expected case should return: ------------------------------------------------- The p-value for the null is 0.015294 Corresponding to a significance of 2.16239 ------------------------------------------------- */ ////////////////////////////////////////// // Confidence Interval Stage // Step 8, Here we re-use the ProfileLikelihoodCalculator to return a confidence interval. // We need to specify what are our parameters of interest RooArgSet *paramsOfInterest = nullParams; // they are the same as before in this case plc.SetParameters(*paramsOfInterest); LikelihoodInterval *lrint = (LikelihoodInterval *)plc.GetInterval(); lrint->SetConfidenceLevel(0.95); // Step 9, make a plot of the likelihood ratio and the interval obtained // paramsOfInterest->setRealValue("masterSignal",1.); // find limits double lower = lrint->LowerLimit(*mu); double upper = lrint->UpperLimit(*mu); LikelihoodIntervalPlot lrPlot(lrint); lrPlot.SetMaximum(3.); lrPlot.Draw(); // Step 10a. Get upper and lower limits cout << "lower limit on master signal = " << lower << endl; cout << "upper limit on master signal = " << upper << endl; // Step 10b, Ask if masterSignal=0 is in the interval. // Note, this is equivalent to the question of a 2-sigma hypothesis test: // "is the parameter point masterSignal=0 inside the 95% confidence interval?" // Since the significance of the Hypothesis test was > 2-sigma it should not be: // eg. we exclude masterSignal=0 at 95% confidence. paramsOfInterest->setRealValue("masterSignal", 0.); cout << "-------------------------------------------------" << endl; std::cout << "Consider this parameter point:" << std::endl; paramsOfInterest->first()->Print(); if (lrint->IsInInterval(*paramsOfInterest)) std::cout << "It IS in the interval." << std::endl; else std::cout << "It is NOT in the interval." << std::endl; cout << "-------------------------------------------------\n\n" << endl; // Step 10c, We also ask about the parameter point masterSignal=2, which is inside the interval. paramsOfInterest->setRealValue("masterSignal", 2.); cout << "-------------------------------------------------" << endl; std::cout << "Consider this parameter point:" << std::endl; paramsOfInterest->first()->Print(); if (lrint->IsInInterval(*paramsOfInterest)) std::cout << "It IS in the interval." << std::endl; else std::cout << "It is NOT in the interval." << std::endl; cout << "-------------------------------------------------\n\n" << endl; delete lrint; delete htr; delete wspace; delete poi; delete nullParams; /* // Here's an example of what is in the workspace // wspace->Print(); RooWorkspace(NumberCountingWS) Number Counting WS contents variables --------- (x_0,masterSignal,expected_s_0,b_0,y_0,tau_0,x_1,expected_s_1,b_1,y_1,tau_1) p.d.f.s ------- RooProdPdf::joint[ pdfs=(sigRegion_0,sideband_0,sigRegion_1,sideband_1) ] = 2.20148e-08 RooPoisson::sigRegion_0[ x=x_0 mean=splusb_0 ] = 0.036393 RooPoisson::sideband_0[ x=y_0 mean=bTau_0 ] = 0.00398939 RooPoisson::sigRegion_1[ x=x_1 mean=splusb_1 ] = 0.0380088 RooPoisson::sideband_1[ x=y_1 mean=bTau_1 ] = 0.00398939 functions -------- RooAddition::splusb_0[ set1=(s_0,b_0) set2=() ] = 120 RooProduct::s_0[ compRSet=(masterSignal,expected_s_0) compCSet=() ] = 20 RooProduct::bTau_0[ compRSet=(b_0,tau_0) compCSet=() ] = 10000 RooAddition::splusb_1[ set1=(s_1,b_1) set2=() ] = 110 RooProduct::s_1[ compRSet=(masterSignal,expected_s_1) compCSet=() ] = 10 RooProduct::bTau_1[ compRSet=(b_1,tau_1) compCSet=() ] = 10000 datasets -------- RooDataSet::ExpectedNumberCountingData(x_0,y_0,x_1,y_1) embedded pre-calculated expensive components ------------------------------------------- */ } void rs_numberCountingCombination_observed() { ///////////////////////////////////////// // The same example with observed data in a main // measurement and an background-only auxiliary // measurement with a factor tau more background // than in the main measurement. ///////////////////////////////////////// // The Model building stage ///////////////////////////////////////// // Step 1, define arrays with signal & bkg expectations and background uncertainties // We still need the expectation to relate signal in different channels with the master signal Double_t s[2] = {20., 10.}; // expected signal // Step 2, use a RooStats factory to build a PDF for a // number counting combination and add it to the workspace. // We need to give the signal expectation to relate the masterSignal // to the signal contribution in the individual channels. // The model neglects correlations in background uncertainty, // but they could be added without much change to the example. NumberCountingPdfFactory f; RooWorkspace *wspace = new RooWorkspace(); f.AddModel(s, 2, wspace, "TopLevelPdf", "masterSignal"); // Step 3, use a RooStats factory to add datasets to the workspace. // Add the observed data to the workspace Double_t mainMeas[2] = {123., 117.}; // observed main measurement Double_t bkgMeas[2] = {111.23, 98.76}; // observed background Double_t dbMeas[2] = {.011, .0095}; // observed fractional background uncertainty f.AddData(mainMeas, bkgMeas, dbMeas, 2, wspace, "ObservedNumberCountingData"); // see below for a printout of the workspace // wspace->Print(); //uncomment to see structure of workspace ///////////////////////////////////////// // The Hypothesis testing stage: ///////////////////////////////////////// // Step 4, Define the null hypothesis for the calculator // Here you need to know the name of the variables corresponding to hypothesis. RooRealVar *mu = wspace->var("masterSignal"); RooArgSet *poi = new RooArgSet(*mu); RooArgSet *nullParams = new RooArgSet("nullParams"); nullParams->addClone(*mu); // here we explicitly set the value of the parameters for the null nullParams->setRealValue("masterSignal", 0); // Step 5, Create a calculator for doing the hypothesis test. // because this is a ProfileLikelihoodCalculator plc(*wspace->data("ObservedNumberCountingData"), *wspace->pdf("TopLevelPdf"), *poi, 0.05, nullParams); wspace->var("tau_0")->Print(); wspace->var("tau_1")->Print(); // Step 7, Use the Calculator to get a HypoTestResult HypoTestResult *htr = plc.GetHypoTest(); cout << "-------------------------------------------------" << endl; cout << "The p-value for the null is " << htr->NullPValue() << endl; cout << "Corresponding to a significance of " << htr->Significance() << endl; cout << "-------------------------------------------------\n\n" << endl; /* observed case should return: ------------------------------------------------- The p-value for the null is 0.0351669 Corresponding to a significance of 1.80975 ------------------------------------------------- */ ////////////////////////////////////////// // Confidence Interval Stage // Step 8, Here we re-use the ProfileLikelihoodCalculator to return a confidence interval. // We need to specify what are our parameters of interest RooArgSet *paramsOfInterest = nullParams; // they are the same as before in this case plc.SetParameters(*paramsOfInterest); LikelihoodInterval *lrint = (LikelihoodInterval *)plc.GetInterval(); lrint->SetConfidenceLevel(0.95); // Step 9c. Get upper and lower limits cout << "lower limit on master signal = " << lrint->LowerLimit(*mu) << endl; cout << "upper limit on master signal = " << lrint->UpperLimit(*mu) << endl; delete lrint; delete htr; delete wspace; delete nullParams; delete poi; } void rs_numberCountingCombination_observedWithTau() { ///////////////////////////////////////// // The same example with observed data in a main // measurement and an background-only auxiliary // measurement with a factor tau more background // than in the main measurement. ///////////////////////////////////////// // The Model building stage ///////////////////////////////////////// // Step 1, define arrays with signal & bkg expectations and background uncertainties // We still need the expectation to relate signal in different channels with the master signal Double_t s[2] = {20., 10.}; // expected signal // Step 2, use a RooStats factory to build a PDF for a // number counting combination and add it to the workspace. // We need to give the signal expectation to relate the masterSignal // to the signal contribution in the individual channels. // The model neglects correlations in background uncertainty, // but they could be added without much change to the example. NumberCountingPdfFactory f; RooWorkspace *wspace = new RooWorkspace(); f.AddModel(s, 2, wspace, "TopLevelPdf", "masterSignal"); // Step 3, use a RooStats factory to add datasets to the workspace. // Add the observed data to the workspace in the on-off problem. Double_t mainMeas[2] = {123., 117.}; // observed main measurement Double_t sideband[2] = {11123., 9876.}; // observed sideband Double_t tau[2] = {100., 100.}; // ratio of bkg in sideband to bkg in main measurement, from experimental design. f.AddDataWithSideband(mainMeas, sideband, tau, 2, wspace, "ObservedNumberCountingDataWithSideband"); // see below for a printout of the workspace // wspace->Print(); //uncomment to see structure of workspace ///////////////////////////////////////// // The Hypothesis testing stage: ///////////////////////////////////////// // Step 4, Define the null hypothesis for the calculator // Here you need to know the name of the variables corresponding to hypothesis. RooRealVar *mu = wspace->var("masterSignal"); RooArgSet *poi = new RooArgSet(*mu); RooArgSet *nullParams = new RooArgSet("nullParams"); nullParams->addClone(*mu); // here we explicitly set the value of the parameters for the null nullParams->setRealValue("masterSignal", 0); // Step 5, Create a calculator for doing the hypothesis test. // because this is a ProfileLikelihoodCalculator plc(*wspace->data("ObservedNumberCountingDataWithSideband"), *wspace->pdf("TopLevelPdf"), *poi, 0.05, nullParams); // Step 7, Use the Calculator to get a HypoTestResult HypoTestResult *htr = plc.GetHypoTest(); cout << "-------------------------------------------------" << endl; cout << "The p-value for the null is " << htr->NullPValue() << endl; cout << "Corresponding to a significance of " << htr->Significance() << endl; cout << "-------------------------------------------------\n\n" << endl; /* observed case should return: ------------------------------------------------- The p-value for the null is 0.0352035 Corresponding to a significance of 1.80928 ------------------------------------------------- */ ////////////////////////////////////////// // Confidence Interval Stage // Step 8, Here we re-use the ProfileLikelihoodCalculator to return a confidence interval. // We need to specify what are our parameters of interest RooArgSet *paramsOfInterest = nullParams; // they are the same as before in this case plc.SetParameters(*paramsOfInterest); LikelihoodInterval *lrint = (LikelihoodInterval *)plc.GetInterval(); lrint->SetConfidenceLevel(0.95); // Step 9c. Get upper and lower limits cout << "lower limit on master signal = " << lrint->LowerLimit(*mu) << endl; cout << "upper limit on master signal = " << lrint->UpperLimit(*mu) << endl; delete lrint; delete htr; delete wspace; delete nullParams; delete poi; }