// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // INCL++ intra-nuclear cascade model // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics // Davide Mancusi, CEA // Alain Boudard, CEA // Sylvie Leray, CEA // Joseph Cugnon, University of Liege // #define INCLXX_IN_GEANT4_MODE 1 #include "globals.hh" #ifndef G4INCLParticleTable_hh #define G4INCLParticleTable_hh 1 #include #include // #include #include "G4INCLParticleType.hh" #include "G4INCLParticleSpecies.hh" #include "G4INCLLogger.hh" #include "G4INCLConfig.hh" #ifdef INCLXX_IN_GEANT4_MODE #include "G4IonTable.hh" #include "G4ParticleTable.hh" #endif #include "G4INCLGlobals.hh" #include "G4INCLNaturalIsotopicDistributions.hh" namespace G4INCL { namespace ParticleTable { const G4int maxClusterMass = 12; const G4int maxClusterCharge = 8; const G4int clusterTableZSize = maxClusterCharge+1; const G4int clusterTableASize = maxClusterMass+1; const G4double effectiveNucleonMass = 938.2796; const G4double effectiveNucleonMass2 = 8.8036860777616e5; const G4double effectiveDeltaMass = 1232.0; const G4double effectivePionMass = 138.0; extern G4ThreadLocal G4double effectiveDeltaDecayThreshold; /// \brief Initialize the particle table void initialize(Config const * const theConfig = 0); /// \brief Get the isospin of a particle G4int getIsospin(const ParticleType t); /// \brief Get the native INCL name of the particle std::string getName(const ParticleType t); /// \brief Get the short INCL name of the particle std::string getShortName(const ParticleType t); /// \brief Get the native INCL name of the particle std::string getName(const ParticleSpecies &s); /// \brief Get the short INCL name of the particle std::string getShortName(const ParticleSpecies &s); /// \brief Get the native INCL name of the ion std::string getName(const G4int A, const G4int Z); /// \brief Get the short INCL name of the ion std::string getShortName(const G4int A, const G4int Z); /// \brief Get INCL nuclear mass (in MeV/c^2) G4double getINCLMass(const G4int A, const G4int Z); /// \brief Get INCL particle mass (in MeV/c^2) G4double getINCLMass(const ParticleType t); #ifndef INCLXX_IN_GEANT4_MODE /// \brief Do we have this particle mass? G4double hasMassTable(const unsigned int A, const unsigned int Z); /** \brief Weizsaecker mass formula * * Return the nuclear mass, as calculated from Weizsaecker's mass formula. * Adapted from the Geant4 source. * * \param A the mass number * \param Z the charge number * \return the nuclear mass [MeV/c^2] */ G4double getWeizsaeckerMass(const G4int A, const G4int Z); #endif ///\brief Get particle mass (in MeV/c^2) G4double getRealMass(const G4INCL::ParticleType t); ///\brief Get nuclear mass (in MeV/c^2) G4double getRealMass(const G4int A, const G4int Z); /**\brief Get Q-value (in MeV/c^2) * * Uses the getTableMass function to compute the Q-value for the * following reaction: * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2,Z_1+Z_2) \f] */ G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2); /**\brief Get Q-value (in MeV/c^2) * * Uses the getTableMass function to compute the Q-value for the * following reaction: * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3) + (A1+A2-A3,Z1+Z2-Z3) \f] */ G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2, const G4int A3, const G4int Z3); G4double getTableSpeciesMass(const ParticleSpecies &p); /// \brief Get mass number from particle type G4int getMassNumber(const ParticleType t); /// \brief Get charge number from particle type G4int getChargeNumber(const ParticleType t); G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z); G4double getLargestNuclearRadius(const G4int A, const G4int Z); G4double getRadiusParameter(const ParticleType t, const G4int A, const G4int Z); G4double getMaximumNuclearRadius(const ParticleType t, const G4int A, const G4int Z); G4double getSurfaceDiffuseness(const ParticleType t, const G4int A, const G4int Z); /// \brief Return the RMS of the momentum distribution (light clusters) G4double getMomentumRMS(const G4int A, const G4int Z); /// \brief Return INCL's default separation energy G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/); /// \brief Return the real separation energy G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z); /// \brief Return the real separation energy only for light nuclei G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z); /// \brief Getter for protonSeparationEnergy G4double getProtonSeparationEnergy(); /// \brief Getter for neutronSeparationEnergy G4double getNeutronSeparationEnergy(); /// \brief Setter for protonSeparationEnergy void setProtonSeparationEnergy(const G4double s); /// \brief Setter for protonSeparationEnergy void setNeutronSeparationEnergy(const G4double s); /// \brief Get the name of the element from the atomic number std::string getElementName(const G4int Z); /// \brief Get the name of an unnamed element from the IUPAC convention std::string getIUPACElementName(const G4int Z); /// \brief Get the name of the element from the atomic number G4int parseElement(std::string pS); /** \brief Parse a IUPAC element name * * Note: this function is UGLY. Look at it at your own peril. * * \param pS a normalised string (lowercase) * \return the charge number of the nuclide, or zero on fail */ G4int parseIUPACElement(std::string const &pS); IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z); G4int drawRandomNaturalIsotope(const G4int Z); // Typedefs and pointers for transparent handling of mass functions typedef G4double (*NuclearMassFn)(const G4int, const G4int); typedef G4double (*ParticleMassFn)(const ParticleType); /// \brief Static pointer to the mass function for nuclei extern G4ThreadLocal NuclearMassFn getTableMass; /// \brief Static pointer to the mass function for particles extern G4ThreadLocal ParticleMassFn getTableParticleMass; // Typedefs and pointers for transparent handling of separation energies typedef G4double (*SeparationEnergyFn)(const ParticleType, const G4int, const G4int); /// \brief Static pointer to the separation-energy function extern G4ThreadLocal SeparationEnergyFn getSeparationEnergy; // Typedefs and pointers for transparent handling of Fermi momentum typedef G4double (*FermiMomentumFn)(const G4int, const G4int); extern G4ThreadLocal FermiMomentumFn getFermiMomentum; /** \brief Return the constant value of the Fermi momentum * * This function should always return PhysicalConstants::Pf. */ G4double getFermiMomentumConstant(const G4int /*A*/, const G4int /*Z*/); /** \brief Return the constant value of the Fermi momentum - special for light * * This function should always return PhysicalConstants::Pf for heavy * nuclei, and values from the momentumRMS table for light nuclei. * * \param A mass number * \param Z charge number */ G4double getFermiMomentumConstantLight(const G4int A, const G4int Z); /** \brief Return the value Fermi momentum from a fit * * This function returns a fitted Fermi momentum, based on data from Moniz * et al., Phys. Rev. Lett. 26 (1971) 445. The fitted functional form is * \f[ * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\gamma)} * \f] * with \f$\alpha=259.416\f$ MeV/\f$c\f$, \f$\beta=152.824\f$ MeV/\f$c\f$ * and \f$\gamma=9.5157\cdot10^{-2}\f$. * * \param A mass number */ G4double getFermiMomentumMassDependent(const G4int A, const G4int /*Z*/); /** \brief Get the value of the r-p correlation coefficient * * \param t the type of the particle (Proton or Neutron) * \return the value of the r-p correlation coefficient */ G4double getRPCorrelationCoefficient(const ParticleType t); /// \brief Get the value of the neutron skin thickness G4double getNeutronSkinThickness(); /// \brief Get the value of the additional neutron skin diffuseness G4double getNeutronSkinAdditionalDiffuseness(); } } #endif