#include #include #include #include #include #include #include #include #include #include using std::vector; using std::map; namespace RAT { DropoutEvaluator::DropoutEvaluator() : Processor("DropoutEvaluator"){ fDBName = "Dropout.ratdb"; fDBTableName = "DROPOUT"; fWriteToFile = false; fOutputType = "root"; fBaselineSet = false; fTemperatureSet = false; fIterationsSet = false; } void DropoutEvaluator::SetI(const std::string& param, const int value) { if (param == "temperature") { fTemperatureSet = true; fFitter.SetTemperature(value); } else if(param == "iterations" || param == "niterations" || param == "num_iterations") { fIterationsSet = true; fFitter.SetIterations(value); } else if(param == "baseline samples" || param == "baseline_samples") { fBaselineSet = true; fBaselineSamples = value; } else { throw ParamUnknown(param); } } void DropoutEvaluator::SetS( const std::string& param, const std::string& value ) { if (param == "filename" || param == "file_name" || param == "file name") { fWriteToFile = true; fFilename = value; } else if (param == "output_type" || param == "output type") { if(value != "json" && value != "root") { warn << "Given output type (" << value <<") not known." "Using default output type ("<< fOutputType << ").\n"; } else{ fOutputType = value; } } else { throw ParamUnknown(param); } } void DropoutEvaluator::BeginOfRun(DS::Run&){ DBLinkPtr dblink = DB::Get()->GetLink("DropoutEvaluator", "DropoutEvaluator"); if(!fBaselineSet) { fBaselineSamples = static_cast( dblink->GetI("baseline_samples")); } if(!fTemperatureSet) { fFitter.SetTemperature(static_cast( dblink->GetI("starting_temperature"))); } if(!fIterationsSet) { fFitter.SetIterations(static_cast( dblink->GetI("sampling_iterations"))); } } Processor::Result DropoutEvaluator::DSEvent(DS::Run&, DS::Entry& ds) { for(size_t iEV = 0; iEV < ds.GetEVCount(); iEV++) { Event(ds, ds.GetEV(iEV)); } return OK; } Processor::Result DropoutEvaluator::Event(DS::Entry&, DS::EV& ev) { if(!ev.DigitiserExists()) { return FAIL; } // Select only PGT int trig_word = ev.GetTrigType(); int pgt_bit = 1< ids = caen.GetIDs(); for(size_t i=0; i < ids.size(); i++) { UShort_t id = ids[i]; UShort_t new_id=id; if (id < 10) { id *= 10; } // Fill relevant histogram with a baseline measurement double baseline = caen.Average(id, 0, fBaselineSamples); double max = caen.Max(id, 0, fBaselineSamples); double min = caen.Min(id, 0, fBaselineSamples); if(max < 4095) { fBaselineValues[new_id].push_back(baseline); fRangeValues[new_id].push_back(max - min); } } return OK; } void DropoutEvaluator::EndOfRun(DS::Run& run) { // Do a fit and store results // Assumes there will be two NHit caen traces available, N100L and N20L // TODO Generalize this to work with potentially many traces. if(fBaselineValues.count(NH100Lo) == 0 || fBaselineValues.count(NH20Lo) == 0) { warn << "Data not available for performing dropout fit.\n"; return; } map > fit_results; map > fit_yvals; map > data_yvals; map > data_xvals; DBTable table(fDBTableName); table.SetI("version", 2); table.SetPassNumber(-1); table.SetRunRange(run.GetRunID(), run.GetRunID()); for(int iHist=0; iHist<2; iHist++) { const char* trigger_type = "N100"; int id = NH100Lo; if(iHist==1) { id = NH20Lo; trigger_type = "N20"; } vector bounds = ExtractWidthBounds(id); if(bounds.size() != 2) { // An error message should already have been emitted continue; } double min = bounds[0]; double max = bounds[1]; PrepFitter(id, min, max); fFitter.PerformFit(); vector params = fFitter.GetParams(); vector best_fit = fFitter.DropoutModel(fFitter.xax, params[0], params[1], params[2], params[3]); char buffer[64]; sprintf(buffer,"%sRate", trigger_type); table.SetD(buffer, params[0]); sprintf(buffer,"%sLocation", trigger_type); table.SetD(buffer, params[1]); sprintf(buffer,"%sSeparation", trigger_type); table.SetD(buffer, params[2]); sprintf(buffer,"%sSigma", trigger_type); table.SetD(buffer, params[3]); sprintf(buffer,"%sNormalization", trigger_type); table.SetD(buffer, fFitter.fNormalization); sprintf(buffer,"%sChi2", trigger_type); table.SetD(buffer, fFitter.Chi2(fFitter.yvals, best_fit)); fit_results[id] = params; data_yvals[id] = fFitter.yvals; data_xvals[id] = fFitter.xax; fit_yvals[id] = best_fit; } // Now store the results in a ratdb file table.SaveAs(fDBName); // If desired write the histograms to a file if (fWriteToFile) { if(fOutputType == "root") { WriteHistogramsToROOTFile(data_xvals, data_yvals, fit_yvals); } else if (fOutputType == "json") { WriteHistogramsToJSONFile(data_xvals, data_yvals, fit_yvals); } } } vector DropoutEvaluator::ExtractWidthBounds(int id) { TSpectrum s; TF1 f("range_hist_gaus","gaus", 0, 100); TH1D h_range("baseline_range", "baseline_range", 100, 0, 100); vector ret; unsigned int n_peaks = 0; double first_peak = -1; double peak_height; for(size_t i=0; i < fRangeValues[id].size(); i++) { vector* vals = &(fRangeValues[id]); h_range.Fill(vals->at(i)); } // n_peaks should be somewhere between 2 and say 5 // we need to find the smallest one, that will correspond to // events with no nhit bumps in them n_peaks = s.Search(&h_range); if(n_peaks == 0) { warn << "DropoutEvaluator::Failed to find peak in CAEN width distribution, failing.\n"; return ret; } int peak_num=0; for(unsigned int iPeak=0; iPeak < n_peaks; iPeak++) { double posx = s.GetPositionX()[iPeak]; if( posx < first_peak || first_peak < 0) { first_peak = posx; peak_num = iPeak; } } peak_height = s.GetPositionY()[peak_num]; f.FixParameter(0, peak_height); f.FixParameter(1, first_peak); h_range.Fit(&f, "BQN0", "", 0, 0); // TODO check convergence double range_sigma = f.GetParameter(2); double min = first_peak - 2.0*range_sigma; double max = first_peak + 2.0*range_sigma; ret.push_back(min); ret.push_back(max); return ret; } void DropoutEvaluator::PrepFitter(const int& id, const double& min, const double& max) { const int BINNING_FACTOR = 2; // How many CAEN ADC values should be in a single histogram bin const int SEED_PEAK_WIDTH = 10; int first_peak = -1; unsigned int n_peaks; vector peaks; double avg_diff = 0; TSpectrum s; TH1D baseline_histogram("n100_baseline", "n100_baseline", 1096/BINNING_FACTOR, 3000, 4096); for(size_t i =0; i < fBaselineValues[id].size(); i++) { double val = fRangeValues[id][i]; if(val <= max && val >= min) { baseline_histogram.Fill(fBaselineValues[id][i]); } } fFitter.fNormalization = baseline_histogram.Integral("width"); baseline_histogram.Scale(1.0/fFitter.fNormalization); n_peaks = s.Search(&baseline_histogram, SEED_PEAK_WIDTH/BINNING_FACTOR); peaks.resize(n_peaks); for(unsigned int iPeak=0; iPeak < n_peaks; iPeak++) { double posx = s.GetPositionX()[iPeak]; peaks[iPeak] = posx; if( posx > first_peak || first_peak < 0) { first_peak = posx; } } std::sort(peaks.begin(), peaks.end()); for(unsigned int iPeak=1; iPeak < n_peaks; iPeak++) { avg_diff += peaks[iPeak] - peaks[iPeak - 1]; } avg_diff /= (n_peaks-1); // TODO have parameter positions not be hardcoded like this // 0 = rate, 1 = position, 2 = separation, 3 = sigma if(avg_diff > 0) { fFitter.SetParam(0, (n_peaks > 1) ? n_peaks/2 : 1); fFitter.SetParam(1, first_peak); fFitter.SetError(1, n_peaks*avg_diff); fFitter.SetParam(2, avg_diff); fFitter.SetError(2, 0); fFitter.SetParam(3, avg_diff/2.0); } // Give the fitter the x,y vals for the histogram vector xax; vector yax; for(int i=1; i<=baseline_histogram.GetNbinsX(); i++) { double y = baseline_histogram.GetBinContent(i); if(y != 0) { yax.push_back(y); xax.push_back(baseline_histogram.GetBinCenter(i)); } } fFitter.xax = xax; fFitter.yvals = yax; } void DropoutEvaluator::WriteHistogramsToROOTFile(map >& x, map >& y, map >& yp) { char buffer[64]; TFile f(fFilename.c_str(),"RECREATE"); for(map >::iterator it=x.begin(); it!=x.end(); ++it) { int id = it->first; const char* name = "N100"; TGraph* g_original = new TGraph(); TGraph* g_fit = new TGraph(); if(id == NH20Lo) { name = "N20"; } for(size_t i=0; i < x[id].size(); i++) { g_fit->SetPoint(i, x[id][i], yp[id][i]); g_original->SetPoint(i, x[id][i], y[id][i]); } sprintf(buffer, "%s_fit_graph", name); g_fit->SetName(buffer); g_fit->SetTitle(buffer); g_fit->Write(); sprintf(buffer, "%s_input_graph", name); g_original->SetName(buffer); g_original->SetTitle(buffer); g_original->Write(); delete g_original; delete g_fit; } f.Close(); } void DropoutEvaluator::WriteHistogramsToJSONFile(map >& x, map >& y, map >& yp) { DBTable output_table("DropoutValues"); for(map >::iterator it=x.begin(); it!=x.end(); ++it) { int id = it->first; const char* name = "N100"; if(id == NH20Lo) { name = "N20"; } char buffer[64]; sprintf(buffer,"%s_xax", name); output_table.SetDArray(buffer, x[id]); sprintf(buffer,"%s_yvals", name); output_table.SetDArray(buffer, y[id]); sprintf(buffer,"%s_fit_vals", name); output_table.SetDArray(buffer, yp[id]); } output_table.SaveAs(fFilename); } } // namespace RAT