/* * md5.c * * Implements the MD5 Message-Digest Algorithm as specified in * RFC 1321. This implementation is a simple one, in that it * needs every input byte to be buffered before doing any * calculations. I do not expect this file to be used for * general purpose MD5'ing of large amounts of data, only for * generating hashed passwords from limited input. * * Sverre H. Huseby * * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/backend/libpq/md5.c */ /* This is intended to be used in both frontend and backend, so use c.h */ #include "c.h" #include "libpq/md5.h" /* * PRIVATE FUNCTIONS */ /* * The returned array is allocated using malloc. the caller should free it * when it is no longer needed. */ static uint8 * createPaddedCopyWithLength(const uint8 *b, uint32 *l) { uint8 *ret; uint32 q; uint32 len, newLen448; uint32 len_high, len_low; /* 64-bit value split into 32-bit sections */ len = ((b == NULL) ? 0 : *l); newLen448 = len + 64 - (len % 64) - 8; if (newLen448 <= len) newLen448 += 64; *l = newLen448 + 8; if ((ret = (uint8 *) malloc(sizeof(uint8) * *l)) == NULL) return NULL; if (b != NULL) memcpy(ret, b, sizeof(uint8) * len); /* pad */ ret[len] = 0x80; for (q = len + 1; q < newLen448; q++) ret[q] = 0x00; /* append length as a 64 bit bitcount */ len_low = len; /* split into two 32-bit values */ /* we only look at the bottom 32-bits */ len_high = len >> 29; len_low <<= 3; q = newLen448; ret[q++] = (len_low & 0xff); len_low >>= 8; ret[q++] = (len_low & 0xff); len_low >>= 8; ret[q++] = (len_low & 0xff); len_low >>= 8; ret[q++] = (len_low & 0xff); ret[q++] = (len_high & 0xff); len_high >>= 8; ret[q++] = (len_high & 0xff); len_high >>= 8; ret[q++] = (len_high & 0xff); len_high >>= 8; ret[q] = (len_high & 0xff); return ret; } #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | ~(z))) #define ROT_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) static void doTheRounds(uint32 X[16], uint32 state[4]) { uint32 a, b, c, d; a = state[0]; b = state[1]; c = state[2]; d = state[3]; /* round 1 */ a = b + ROT_LEFT((a + F(b, c, d) + X[0] + 0xd76aa478), 7); /* 1 */ d = a + ROT_LEFT((d + F(a, b, c) + X[1] + 0xe8c7b756), 12); /* 2 */ c = d + ROT_LEFT((c + F(d, a, b) + X[2] + 0x242070db), 17); /* 3 */ b = c + ROT_LEFT((b + F(c, d, a) + X[3] + 0xc1bdceee), 22); /* 4 */ a = b + ROT_LEFT((a + F(b, c, d) + X[4] + 0xf57c0faf), 7); /* 5 */ d = a + ROT_LEFT((d + F(a, b, c) + X[5] + 0x4787c62a), 12); /* 6 */ c = d + ROT_LEFT((c + F(d, a, b) + X[6] + 0xa8304613), 17); /* 7 */ b = c + ROT_LEFT((b + F(c, d, a) + X[7] + 0xfd469501), 22); /* 8 */ a = b + ROT_LEFT((a + F(b, c, d) + X[8] + 0x698098d8), 7); /* 9 */ d = a + ROT_LEFT((d + F(a, b, c) + X[9] + 0x8b44f7af), 12); /* 10 */ c = d + ROT_LEFT((c + F(d, a, b) + X[10] + 0xffff5bb1), 17); /* 11 */ b = c + ROT_LEFT((b + F(c, d, a) + X[11] + 0x895cd7be), 22); /* 12 */ a = b + ROT_LEFT((a + F(b, c, d) + X[12] + 0x6b901122), 7); /* 13 */ d = a + ROT_LEFT((d + F(a, b, c) + X[13] + 0xfd987193), 12); /* 14 */ c = d + ROT_LEFT((c + F(d, a, b) + X[14] + 0xa679438e), 17); /* 15 */ b = c + ROT_LEFT((b + F(c, d, a) + X[15] + 0x49b40821), 22); /* 16 */ /* round 2 */ a = b + ROT_LEFT((a + G(b, c, d) + X[1] + 0xf61e2562), 5); /* 17 */ d = a + ROT_LEFT((d + G(a, b, c) + X[6] + 0xc040b340), 9); /* 18 */ c = d + ROT_LEFT((c + G(d, a, b) + X[11] + 0x265e5a51), 14); /* 19 */ b = c + ROT_LEFT((b + G(c, d, a) + X[0] + 0xe9b6c7aa), 20); /* 20 */ a = b + ROT_LEFT((a + G(b, c, d) + X[5] + 0xd62f105d), 5); /* 21 */ d = a + ROT_LEFT((d + G(a, b, c) + X[10] + 0x02441453), 9); /* 22 */ c = d + ROT_LEFT((c + G(d, a, b) + X[15] + 0xd8a1e681), 14); /* 23 */ b = c + ROT_LEFT((b + G(c, d, a) + X[4] + 0xe7d3fbc8), 20); /* 24 */ a = b + ROT_LEFT((a + G(b, c, d) + X[9] + 0x21e1cde6), 5); /* 25 */ d = a + ROT_LEFT((d + G(a, b, c) + X[14] + 0xc33707d6), 9); /* 26 */ c = d + ROT_LEFT((c + G(d, a, b) + X[3] + 0xf4d50d87), 14); /* 27 */ b = c + ROT_LEFT((b + G(c, d, a) + X[8] + 0x455a14ed), 20); /* 28 */ a = b + ROT_LEFT((a + G(b, c, d) + X[13] + 0xa9e3e905), 5); /* 29 */ d = a + ROT_LEFT((d + G(a, b, c) + X[2] + 0xfcefa3f8), 9); /* 30 */ c = d + ROT_LEFT((c + G(d, a, b) + X[7] + 0x676f02d9), 14); /* 31 */ b = c + ROT_LEFT((b + G(c, d, a) + X[12] + 0x8d2a4c8a), 20); /* 32 */ /* round 3 */ a = b + ROT_LEFT((a + H(b, c, d) + X[5] + 0xfffa3942), 4); /* 33 */ d = a + ROT_LEFT((d + H(a, b, c) + X[8] + 0x8771f681), 11); /* 34 */ c = d + ROT_LEFT((c + H(d, a, b) + X[11] + 0x6d9d6122), 16); /* 35 */ b = c + ROT_LEFT((b + H(c, d, a) + X[14] + 0xfde5380c), 23); /* 36 */ a = b + ROT_LEFT((a + H(b, c, d) + X[1] + 0xa4beea44), 4); /* 37 */ d = a + ROT_LEFT((d + H(a, b, c) + X[4] + 0x4bdecfa9), 11); /* 38 */ c = d + ROT_LEFT((c + H(d, a, b) + X[7] + 0xf6bb4b60), 16); /* 39 */ b = c + ROT_LEFT((b + H(c, d, a) + X[10] + 0xbebfbc70), 23); /* 40 */ a = b + ROT_LEFT((a + H(b, c, d) + X[13] + 0x289b7ec6), 4); /* 41 */ d = a + ROT_LEFT((d + H(a, b, c) + X[0] + 0xeaa127fa), 11); /* 42 */ c = d + ROT_LEFT((c + H(d, a, b) + X[3] + 0xd4ef3085), 16); /* 43 */ b = c + ROT_LEFT((b + H(c, d, a) + X[6] + 0x04881d05), 23); /* 44 */ a = b + ROT_LEFT((a + H(b, c, d) + X[9] + 0xd9d4d039), 4); /* 45 */ d = a + ROT_LEFT((d + H(a, b, c) + X[12] + 0xe6db99e5), 11); /* 46 */ c = d + ROT_LEFT((c + H(d, a, b) + X[15] + 0x1fa27cf8), 16); /* 47 */ b = c + ROT_LEFT((b + H(c, d, a) + X[2] + 0xc4ac5665), 23); /* 48 */ /* round 4 */ a = b + ROT_LEFT((a + I(b, c, d) + X[0] + 0xf4292244), 6); /* 49 */ d = a + ROT_LEFT((d + I(a, b, c) + X[7] + 0x432aff97), 10); /* 50 */ c = d + ROT_LEFT((c + I(d, a, b) + X[14] + 0xab9423a7), 15); /* 51 */ b = c + ROT_LEFT((b + I(c, d, a) + X[5] + 0xfc93a039), 21); /* 52 */ a = b + ROT_LEFT((a + I(b, c, d) + X[12] + 0x655b59c3), 6); /* 53 */ d = a + ROT_LEFT((d + I(a, b, c) + X[3] + 0x8f0ccc92), 10); /* 54 */ c = d + ROT_LEFT((c + I(d, a, b) + X[10] + 0xffeff47d), 15); /* 55 */ b = c + ROT_LEFT((b + I(c, d, a) + X[1] + 0x85845dd1), 21); /* 56 */ a = b + ROT_LEFT((a + I(b, c, d) + X[8] + 0x6fa87e4f), 6); /* 57 */ d = a + ROT_LEFT((d + I(a, b, c) + X[15] + 0xfe2ce6e0), 10); /* 58 */ c = d + ROT_LEFT((c + I(d, a, b) + X[6] + 0xa3014314), 15); /* 59 */ b = c + ROT_LEFT((b + I(c, d, a) + X[13] + 0x4e0811a1), 21); /* 60 */ a = b + ROT_LEFT((a + I(b, c, d) + X[4] + 0xf7537e82), 6); /* 61 */ d = a + ROT_LEFT((d + I(a, b, c) + X[11] + 0xbd3af235), 10); /* 62 */ c = d + ROT_LEFT((c + I(d, a, b) + X[2] + 0x2ad7d2bb), 15); /* 63 */ b = c + ROT_LEFT((b + I(c, d, a) + X[9] + 0xeb86d391), 21); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; } static int calculateDigestFromBuffer(const uint8 *b, uint32 len, uint8 sum[16]) { register uint32 i, j, k, newI; uint32 l; uint8 *input; register uint32 *wbp; uint32 workBuff[16], state[4]; l = len; state[0] = 0x67452301; state[1] = 0xEFCDAB89; state[2] = 0x98BADCFE; state[3] = 0x10325476; if ((input = createPaddedCopyWithLength(b, &l)) == NULL) return 0; for (i = 0;;) { if ((newI = i + 16 * 4) > l) break; k = i + 3; for (j = 0; j < 16; j++) { wbp = (workBuff + j); *wbp = input[k--]; *wbp <<= 8; *wbp |= input[k--]; *wbp <<= 8; *wbp |= input[k--]; *wbp <<= 8; *wbp |= input[k]; k += 7; } doTheRounds(workBuff, state); i = newI; } free(input); j = 0; for (i = 0; i < 4; i++) { k = state[i]; sum[j++] = (k & 0xff); k >>= 8; sum[j++] = (k & 0xff); k >>= 8; sum[j++] = (k & 0xff); k >>= 8; sum[j++] = (k & 0xff); } return 1; } static void bytesToHex(uint8 b[16], char *s) { static const char *hex = "0123456789abcdef"; int q, w; for (q = 0, w = 0; q < 16; q++) { s[w++] = hex[(b[q] >> 4) & 0x0F]; s[w++] = hex[b[q] & 0x0F]; } s[w] = '\0'; } /* * PUBLIC FUNCTIONS */ /* * pg_md5_hash * * Calculates the MD5 sum of the bytes in a buffer. * * SYNOPSIS #include "md5.h" * int pg_md5_hash(const void *buff, size_t len, char *hexsum) * * INPUT buff the buffer containing the bytes that you want * the MD5 sum of. * len number of bytes in the buffer. * * OUTPUT hexsum the MD5 sum as a '\0'-terminated string of * hexadecimal digits. an MD5 sum is 16 bytes long. * each byte is represented by two heaxadecimal * characters. you thus need to provide an array * of 33 characters, including the trailing '\0'. * * RETURNS false on failure (out of memory for internal buffers) or * true on success. * * STANDARDS MD5 is described in RFC 1321. * * AUTHOR Sverre H. Huseby * */ bool pg_md5_hash(const void *buff, size_t len, char *hexsum) { uint8 sum[16]; if (!calculateDigestFromBuffer(buff, len, sum)) return false; bytesToHex(sum, hexsum); return true; } bool pg_md5_binary(const void *buff, size_t len, void *outbuf) { if (!calculateDigestFromBuffer(buff, len, outbuf)) return false; return true; } /* * Computes MD5 checksum of "passwd" (a null-terminated string) followed * by "salt" (which need not be null-terminated). * * Output format is "md5" followed by a 32-hex-digit MD5 checksum. * Hence, the output buffer "buf" must be at least 36 bytes long. * * Returns TRUE if okay, FALSE on error (out of memory). */ bool pg_md5_encrypt(const char *passwd, const char *salt, size_t salt_len, char *buf) { size_t passwd_len = strlen(passwd); /* +1 here is just to avoid risk of unportable malloc(0) */ char *crypt_buf = malloc(passwd_len + salt_len + 1); bool ret; if (!crypt_buf) return false; /* * Place salt at the end because it may be known by users trying to crack * the MD5 output. */ memcpy(crypt_buf, passwd, passwd_len); memcpy(crypt_buf + passwd_len, salt, salt_len); strcpy(buf, "md5"); ret = pg_md5_hash(crypt_buf, passwd_len + salt_len, buf + 3); free(crypt_buf); return ret; }