// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** //////////////////////////////////////////////////////////////////////// // // File: G4Cerenkov.hh // Description: Discrete Process - Generation of Cerenkov Photons // Version: 2.0 // Created: 1996-02-21 // Author: Juliet Armstrong // Updated: 2007-09-30 change inheritance to G4VDiscreteProcess // 2005-07-28 add G4ProcessType to constructor // 1999-10-29 add method and class descriptors // 1997-04-09 by Peter Gumplinger // > G4MaterialPropertiesTable; new physics/tracking scheme // mail: gum@triumf.ca // // RAT: Ported to RAT 25/06/2012 as per physics list updates for // rat-4 by P G Jones. Has additions logging of photon number // and photon thinning. Search for RAT. // 2015-05-13 W Heintzelman - added capability to reset // photon count to a non-zero value // 2016-10-23 N Barros - Added UserTrackInformation object to newly generated tracks. //////////////////////////////////////////////////////////////////////// #ifndef Cerenkov_h #define Cerenkov_h 1 ///////////// // Includes ///////////// #include "globals.hh" #include "templates.hh" #include "Randomize.hh" #include "G4ThreeVector.hh" #include "G4ParticleMomentum.hh" #include "G4Step.hh" #include "G4VProcess.hh" #include "G4OpticalPhoton.hh" #include "G4DynamicParticle.hh" #include "G4Material.hh" #include "G4PhysicsTable.hh" #include "G4MaterialPropertyVector.hh" #include "G4MaterialPropertiesTable.hh" #include "G4PhysicsOrderedFreeVector.hh" // Class Description: // Discrete Process -- Generation of Cerenkov Photons. // Class inherits publicly from G4VDiscreteProcess. // Class Description - End: ///////////////////// // Class Definition ///////////////////// class Cerenkov : public G4VProcess { private: ////////////// // Operators ////////////// // Cerenkov& operator=(const Cerenkov &right); public: // Without description //////////////////////////////// // Constructors and Destructor //////////////////////////////// Cerenkov(const G4String& processName = "Cerenkov", G4ProcessType type = fElectromagnetic); // Cerenkov(const Cerenkov &right); virtual ~Cerenkov(); // RAT Additions static int fsPhotonCount; static void ResetPhotonCount( int ct = 0 ) { fsPhotonCount = ct; } static int GetPhotonCount() { return fsPhotonCount; } // END RAT Additions //////////// // Methods //////////// public: // With description G4bool IsApplicable(const G4ParticleDefinition& aParticleType); // Returns true -> 'is applicable', for all charged particles // except short-lived particles. G4double GetMeanFreePath(const G4Track& aTrack, G4double , G4ForceCondition* ); // Returns the discrete step limit and sets the 'StronglyForced' // condition for the DoIt to be invoked at every step. G4double PostStepGetPhysicalInteractionLength(const G4Track& aTrack, G4double , G4ForceCondition* ); // Returns the discrete step limit and sets the 'StronglyForced' // condition for the DoIt to be invoked at every step. G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep); // This is the method implementing the Cerenkov process. // no operation in AtRestDoIt and AlongStepDoIt virtual G4double AlongStepGetPhysicalInteractionLength( const G4Track&, G4double , G4double , G4double& , G4GPILSelection* ) { return -1.0; }; virtual G4double AtRestGetPhysicalInteractionLength( const G4Track& , G4ForceCondition* ) { return -1.0; }; // no operation in AtRestDoIt and AlongStepDoIt virtual G4VParticleChange* AtRestDoIt( const G4Track& , const G4Step& ) {return 0;}; virtual G4VParticleChange* AlongStepDoIt( const G4Track& , const G4Step& ) {return 0;}; void SetTrackSecondariesFirst(const G4bool state); // If set, the primary particle tracking is interrupted and any // produced Cerenkov photons are tracked next. When all have // been tracked, the tracking of the primary resumes. void SetMaxBetaChangePerStep(const G4double d); // Set the maximum allowed change in beta = v/c in % (perCent) // per step. void SetMaxNumPhotonsPerStep(const G4int NumPhotons); // Set the maximum number of Cerenkov photons allowed to be // generated during a tracking step. This is an average ONLY; // the actual number will vary around this average. If invoked, // the maximum photon stack will roughly be of the size set. // If not called, the step is not limited by the number of // photons generated. G4PhysicsTable* GetPhysicsTable() const; // Returns the address of the physics table. void DumpPhysicsTable() const; // Prints the physics table. // Overridden by the SNOMANCerenkov (calculates the integral differently) virtual void BuildThePhysicsTable(); ///////////////////// // Helper Functions ///////////////////// private: virtual G4double GetAverageNumberOfPhotons(const G4double charge, const G4double beta, const G4Material *aMaterial, G4MaterialPropertyVector* Rindex) const; /////////////////////// // Class Data Members /////////////////////// protected: G4PhysicsTable* thePhysicsTable; // A Physics Table can be either a cross-sections table or // an energy table (or can be used for other specific // purposes). private: G4bool fTrackSecondariesFirst; G4double fMaxBetaChange; G4int fMaxPhotons; }; //////////////////// // Inline methods //////////////////// inline G4bool Cerenkov::IsApplicable(const G4ParticleDefinition& aParticleType) { if (aParticleType.GetParticleName() == "chargedgeantino") return false; if (aParticleType.IsShortLived()) return false; return (aParticleType.GetPDGCharge() != 0); } inline void Cerenkov::SetTrackSecondariesFirst(const G4bool state) { fTrackSecondariesFirst = state; } inline void Cerenkov::SetMaxBetaChangePerStep(const G4double value) { fMaxBetaChange = value*CLHEP::perCent; } inline void Cerenkov::SetMaxNumPhotonsPerStep(const G4int NumPhotons) { fMaxPhotons = NumPhotons; } inline void Cerenkov::DumpPhysicsTable() const { G4int PhysicsTableSize = thePhysicsTable->entries(); G4PhysicsOrderedFreeVector *v; for (G4int i = 0 ; i < PhysicsTableSize ; i++ ) { v = (G4PhysicsOrderedFreeVector*)(*thePhysicsTable)[i]; v->DumpValues(); } } inline G4PhysicsTable* Cerenkov::GetPhysicsTable() const { return thePhysicsTable; } #endif /* Cerenkov_h */