#include #include #include #include #include #include #include #include using namespace RAT; using namespace RAT::Classifiers; using namespace RAT::DS; #include using namespace ROOT; #include #include #include using namespace std; #include void BiPoLikelihoodDiff::Initialise(const std::string& param) { // This index should be of the form - // where the second portion (material) is optional; if not used // then the current material in the inner AV will be used if possible // or a default material if there is no PDF for the current material fIndex = param; } void BiPoLikelihoodDiff::BeginOfRun(DS::Run&) { // Get entry for the given material/isotope combination index DB* db = DB::Get(); string materialIndex; string usedIndex; string defaultIndex = "te_diol_0p5_labppo_scintillator_bisMSB_Jan2016_214BiPo"; string biPoIndex; if( fIndex.empty() == true ) { materialIndex = db->GetLink("GEO", "inner_av")->GetS("material"); biPoIndex = "214"; } else { // If there is a hyphen, then get both material and pdf type (212 or 214) // if there is no hyphen then get only the pdf type const size_t hyphenPos = fIndex.find("-"); if( hyphenPos != string::npos ) { materialIndex = fIndex.substr( 0, hyphenPos ); biPoIndex = fIndex.substr( hyphenPos+1 ); } else { materialIndex = db->GetLink("GEO", "inner_av")->GetS("material"); biPoIndex = fIndex; } } // Now construct the table index from BiPoType string index = materialIndex + "_" + biPoIndex + "BiPo"; DBLinkPtr dbLink = db->GetLink("CLASSIFIER_BIPO_LIKELIHOODDIFF", defaultIndex); DBLinkGroup grp = db->GetLinkGroup("CLASSIFIER_BIPO_LIKELIHOODDIFF"); DBLinkGroup::iterator it; for(it=grp.begin();it!=grp.end();++it) { if(index == it->first) { dbLink = db->GetLink("CLASSIFIER_BIPO_LIKELIHOODDIFF", index); usedIndex = index; } } if( usedIndex != index ) warn << "BiPoLikelihoodDiff::No PDF available for " << index << ", using the default entry (" << defaultIndex << ")" << newline; fTimes = dbLink->GetDArray("times"); fProbabilityTe = dbLink->GetDArray("pdf_Te"); fProbabilityBi = dbLink->GetDArray("pdf_Bi"); fProbabilityPo = dbLink->GetDArray("pdf_Po"); fMeanPoAlphaNhits = dbLink->GetD("meanPoAlphaNhits"); fTriggerWindowStart = dbLink->GetD("triggerWindowStartTime"); fTriggerWindowEnd = dbLink->GetD("triggerWindowEndTime"); fBasePDFTe = new G4PhysicsOrderedFreeVector( &(fTimes[0]), &(fProbabilityTe[0]), fTimes.size() ); fBasePDFBi = new G4PhysicsOrderedFreeVector( &(fTimes[0]), &(fProbabilityBi[0]), fTimes.size() ); fBasePDFPo = new G4PhysicsOrderedFreeVector( &(fTimes[0]), &(fProbabilityPo[0]), fTimes.size() ); fLightPath = DU::Utility::Get()->GetLightPathCalculator(); } void BiPoLikelihoodDiff::EndOfRun(DS::Run&) { // Clear all vectors and delete all pointers fTimes.clear(); fProbabilityTe.clear(); fProbabilityBi.clear(); fProbabilityPo.clear(); delete fBasePDFTe; delete fBasePDFBi; delete fBasePDFPo; } void BiPoLikelihoodDiff::DefaultSeed() { fEventPosition = TVector3(); fEventTime = 0.0; } void BiPoLikelihoodDiff::SetSeed(const DS::FitResult& seed) { FitVertex seedVertex; try {seedVertex = seed.GetVertex(0);} catch( FitResult::NoVertexError& error ) {return;} try {fEventPosition = seedVertex.GetPosition();} catch( FitVertex::NoValueError& error ) {return;} try {fEventTime = seedVertex.GetTime();} catch( FitVertex::NoValueError& error ) {return;} } std::vector BiPoLikelihoodDiff::GetParams() const { return fParams; } std::vector BiPoLikelihoodDiff::GetPositiveErrors() const { return fPositiveErrors; } std::vector BiPoLikelihoodDiff::GetNegativeErrors() const { return fNegativeErrors; } void BiPoLikelihoodDiff::SetParams(const std::vector& params) { fParams = params; } void BiPoLikelihoodDiff::SetPositiveErrors(const std::vector& errors) { fPositiveErrors = errors; } void BiPoLikelihoodDiff::SetNegativeErrors(const std::vector& errors) { fNegativeErrors = errors; } double BiPoLikelihoodDiff::operator() (const std::vector& params) { // For the current trial value of deltaTime ... double deltaTime = params[0]; // ... find the expected fraction of Po-Nhits up to this value of deltaTime ... double inWindowPoAlphaNhitsFraction = 0.0; for (unsigned int b = 0; b <= fProbabilityPo.size(); b++) { if ((fTriggerWindowEnd - deltaTime) > fProbabilityPo[b]) {inWindowPoAlphaNhitsFraction += fProbabilityPo[b];} } double inWindowPoAlphaNhits = fMeanPoAlphaNhits * inWindowPoAlphaNhitsFraction; double currentLogLikelihood = 0.0; // ... and for each offset Time Residual ... for (unsigned int t = 0; t < fTimeResiduals.size(); t++) { // ... find the probability of getting that Time Residual value from the Bi PDF ... double probBi = fBasePDFBi->Value(fTimeResiduals[t]); if (probBi == 0.0) {continue;} // ... find the probability of getting that Time Residual value offset by this value of deltaTime from the Po PDF ... double probPo = fBasePDFPo->Value(fTimeResiduals[t] - deltaTime); if (probPo == 0.0) {continue;} // ... find the corresponding single PMT log-likelihood value and add to the summation double singlePMTValue = log(((fNHitsWithinWindow - inWindowPoAlphaNhits) * probBi) + (inWindowPoAlphaNhits * probPo)); currentLogLikelihood += singlePMTValue; } return currentLogLikelihood; } double BiPoLikelihoodDiff::logLikelihoodTe() { double logLikelihood = 0.0; // For each offset Time Residual ... for (unsigned int t = 0; t < fTimeResiduals.size(); t++) { // ... find the probability of getting that Time Residual value from the 130Te PDF ... double probTe = fBasePDFTe->Value(fTimeResiduals[t]); if (probTe == 0.0) {continue;} // ... find the corresponding single PMT log-likelihood value and add to the summation double singlePMTValue = log(fNHitsWithinWindow * probTe); logLikelihood += singlePMTValue; } return logLikelihood; } DS::ClassifierResult BiPoLikelihoodDiff::GetClassification() { fClassifierResult.Reset(); if( fPMTData.empty() ) return fClassifierResult; // Set the starting value and the range over which to optimise: between (fParams[i] - fNegativeErrors[i]) and (fParams[i] + fPositiveErrors[i]) for each dimension i to be optimised // The number of divisions in this range is set in the macro by using: /rat/procset optimiser "grid-X" ... where X refers to X divisions in the range between fNegativeErrors[i] and fPositiveErrors[i] fParams.push_back(0.0); fPositiveErrors.push_back(fTriggerWindowEnd); fNegativeErrors.push_back(0.0); fOptimiser->SetComponent(this); // Store the Time Residuals for later use, and count the number of PMTs in the event with Time Residual within the Trigger Window const int eventNhits = fPMTData.size(); fNHitsWithinWindow = 0.0; for (int j = 0; j < eventNhits; j++) { const TVector3 pmtPosition = DU::Utility::Get()->GetPMTInfo().GetPosition(fPMTData[j].GetID()); const double pmtTime = fPMTData[j].GetTime(); DU::LightPathCalculator lightPath = DU::Utility::Get()->GetLightPathCalculator(); lightPath.CalcByPosition(fEventPosition, pmtPosition); double distInInnerAV = lightPath.GetDistInInnerAV(); double distInAV = lightPath.GetDistInAV(); double distInWater = lightPath.GetDistInWater(); const double flightTime = DU::Utility::Get()->GetEffectiveVelocity().CalcByDistance(distInInnerAV, distInAV, distInWater); const double timeResid = pmtTime - flightTime - fEventTime; fTimeResiduals.push_back(timeResid); if ((timeResid >= fTriggerWindowStart) && (timeResid < fTriggerWindowEnd)) {fNHitsWithinWindow += 1.0;} } // Find the 10th earliest Time Residual and offset all the Time Residuals by this 10th value - do this now to save having to do it multiple times later on sort(fTimeResiduals.begin(), fTimeResiduals.end()); double offsetTime = fTimeResiduals[9]; for (unsigned int t = 0; t < fTimeResiduals.size(); t++) { fTimeResiduals[t] -= offsetTime; } // Calculate the Log-Likelihood compared to the Te-PDF double lglklhdTe = logLikelihoodTe(); SetFOM("lglklhdTe", lglklhdTe); // Calculate the Maximum BiPo Log-Likelihood value using the Optimiser const double lglklhdBiPo = fOptimiser->Maximise(); SetFOM("lglklhdBiPo", lglklhdBiPo); // Save the optimised value of deltaTime and the optimiser errors, and then clear the optimiser parameters ready for the next event SetParams(fOptimiser->GetParams()); SetFOM("optmDelTime", fParams[0]); SetPositiveErrors(fOptimiser->GetPositiveErrors()); SetNegativeErrors(fOptimiser->GetNegativeErrors()); fParams.clear(); fPositiveErrors.clear(); fNegativeErrors.clear(); fTimeResiduals.clear(); // The Classifier Result is the Difference in the Log-Likelihoods fClassifierResult.SetClassification("lglklhdDiff", (lglklhdBiPo - lglklhdTe)); fClassifierResult.SetValid(true); return fClassifierResult; }