/////////////////////////////////////////////////////////////////////// // // EnergyRThetaFunctional // // Uses Segmentor and poisson correction to convert from NHits to an // energy estimator (H). H(r, theta) is converted to an effective H(r=0) // using 3rd order polynomials of H vs r at a given theta (interpolation // of the two closest H(r) values to find H(r, theta)). The energy is // then estimated using a lookup of H(0) vs energy. // // Author: Matt Mottram -- contact person // // REVISION HISTORY: // - 2015/11/26: Matt Mottram - first instance // - 2016/05/19: Matt Mottram - revert to lookup H vs E // /////////////////////////////////////////////////////////////////////// #ifndef __RAT_Methods_EnergyRThetaFunctional__ #define __RAT_Methods_EnergyRThetaFunctional__ #include #include #include namespace RAT{ namespace DS { class FitResult; } namespace Methods{ class EnergyRThetaFunctional : public SeededMethod { public: // Name getters std::string GetName() const { return EnergyRThetaFunctional::Name(); } static std::string Name() { return std::string("energyRThetaFunctional"); } // Initialise the method, index is optional index in the DB void Initialise(const std::string& index) { fIndex = index; } // BeginOfRun to load constants from the database void BeginOfRun(DS::Run& run); // Nothing to do in EndOfRun void EndOfRun(DS::Run&) {} // Set the seed to a default value (origin) void DefaultSeed(); // Calculate and return best fit value DS::FitResult GetBestFit(); private: std::string fIndex; // Optional index override for the DB table double fRPiecewise; // Radius cutoff to transition from f1 to f2 double fRCutoff; // Upper radius beyond which fits are invalid std::vector fEnergies; // Energies H per MeV is coordinated at std::vector fHAtEnergy; // Segmentor H parameter (energy scaling) as a lookup std::vector fThetas; // Theta values that index the other vector member variables std::vector fF1Pol0; // 0th order polynomial constant for function1 std::vector fF1Pol1; // 0th order polynomial constant for function1 std::vector fF1Pol2; // 0th order polynomial constant for function1 std::vector fF1Pol3; // 0th order polynomial constant for function1 std::vector fF2Constant; // constant for polynomial x -> (x - [0]) correction std::vector fF2Pol0; // 0th order polynomial constant for function2 std::vector fF2Pol1; // 0th order polynomial constant for function2 std::vector fF2Pol2; // 0th order polynomial constant for function2 std::vector fF2Pol3; // 0th order polynomial constant for function2 }; } // Methods } // RAT #endif