// @(#)root/smatrix:$Id$ // Author: M. Schiller 2009 #ifndef ROOT_Math_CholeskyDecomp #define ROOT_Math_CholeskyDecomp /** @file * header file containing the templated implementation of matrix inversion * routines for use with ROOT's SMatrix classes (symmetric positive * definite case) * * @author Manuel Schiller * @date Aug 29 2008 * initial release inside LHCb * @date May 7 2009 * factored code to provide a nice Cholesky decomposition class, along * with separate methods for solving a single linear system and to * obtain the inverse matrix from the decomposition * @date July 15th 2013 * provide a version of that class which works if the dimension of the * problem is only known at run time * @date September 30th 2013 * provide routines to access the result of the decomposition L and its * inverse */ #include #include namespace ROOT { namespace Math { /// helpers for CholeskyDecomp namespace CholeskyDecompHelpers { // forward decls template struct _decomposerGenDim; template struct _decomposer; template struct _inverterGenDim; template struct _inverter; template struct _solverGenDim; template struct _solver; template class PackedArrayAdapter; } /// class to compute the Cholesky decomposition of a matrix /** class to compute the Cholesky decomposition of a symmetric * positive definite matrix * * provides routines to check if the decomposition succeeded (i.e. if * matrix is positive definite and non-singular), to solve a linear * system for the given matrix and to obtain its inverse * * the actual functionality is implemented in templated helper * classes which have specializations for dimensions N = 1 to 6 * to achieve a gain in speed for common matrix sizes * * usage example: * @code * // let m be a symmetric positive definite SMatrix (use type float * // for internal computations, matrix size is 4x4) * CholeskyDecomp decomp(m); * // check if the decomposition succeeded * if (!decomp) { * std::cerr << "decomposition failed!" << std::endl; * } else { * // let rhs be a vector; we seek a vector x such that m * x = rhs * decomp.Solve(rhs); * // rhs now contains the solution we are looking for * * // obtain the inverse of m, put it into m itself * decomp.Invert(m); * } * @endcode */ template class CholeskyDecomp { private: /// lower triangular matrix L /** lower triangular matrix L, packed storage, with diagonal * elements pre-inverted */ F fL[N * (N + 1) / 2]; /// flag indicating a successful decomposition bool fOk; public: /// perform a Cholesky decomposition /** perfrom a Cholesky decomposition of a symmetric positive * definite matrix m * * this is the constructor to uses with an SMatrix (and objects * that behave like an SMatrix in terms of using * operator()(int i, int j) for access to elements) */ template CholeskyDecomp(const M& m) : fL( ), fOk(false) { using CholeskyDecompHelpers::_decomposer; fOk = _decomposer()(fL, m); } /// perform a Cholesky decomposition /** perfrom a Cholesky decomposition of a symmetric positive * definite matrix m * * this is the constructor to use in special applications where * plain arrays are used * * NOTE: the matrix is given in packed representation, matrix * element m(i,j) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template CholeskyDecomp(G* m) : fL(), fOk(false) { using CholeskyDecompHelpers::_decomposer; using CholeskyDecompHelpers::PackedArrayAdapter; fOk = _decomposer >()( fL, PackedArrayAdapter(m)); } /// returns true if decomposition was successful /** @returns true if decomposition was successful */ bool ok() const { return fOk; } /// returns true if decomposition was successful /** @returns true if decomposition was successful */ operator bool() const { return fOk; } /** @brief solves a linear system for the given right hand side * * Note that you can use both SVector classes and plain arrays for * rhs. (Make sure that the sizes match!). It will work with any vector * implementing the operator [i] * * @returns if the decomposition was successful */ template bool Solve(V& rhs) const { using CholeskyDecompHelpers::_solver; if (fOk) _solver()(rhs, fL); return fOk; } /** @brief place the inverse into m * * This is the method to use with an SMatrix. * * @returns if the decomposition was successful */ template bool Invert(M& m) const { using CholeskyDecompHelpers::_inverter; if (fOk) _inverter()(m, fL); return fOk; } /** @brief place the inverse into m * * This is the method to use with a plain array. * * @returns if the decomposition was successful * * NOTE: the matrix is given in packed representation, matrix * element m(i,j) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template bool Invert(G* m) const { using CholeskyDecompHelpers::_inverter; using CholeskyDecompHelpers::PackedArrayAdapter; if (fOk) { PackedArrayAdapter adapted(m); _inverter >()(adapted, fL); } return fOk; } /** @brief obtain the decomposed matrix L * * This is the method to use with a plain array. * * @returns if the decomposition was successful */ template bool getL(M& m) const { if (!fOk) return false; for (unsigned i = 0; i < N; ++i) { // zero upper half of matrix for (unsigned j = i + 1; j < N; ++j) m(i, j) = F(0); // copy the rest for (unsigned j = 0; j <= i; ++j) m(i, j) = fL[i * (i + 1) / 2 + j]; // adjust the diagonal - we save 1/L(i, i) in that position, so // convert to what caller expects m(i, i) = F(1) / m(i, i); } return true; } /** @brief obtain the decomposed matrix L * * @returns if the decomposition was successful * * NOTE: the matrix is given in packed representation, matrix * element m(i,j) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template bool getL(G* m) const { if (!fOk) return false; // copy L for (unsigned i = 0; i < (N * (N + 1)) / 2; ++i) m[i] = fL[i]; // adjust diagonal - we save 1/L(i, i) in that position, so convert to // what caller expects for (unsigned i = 0; i < N; ++i) m[(i * (i + 1)) / 2 + i] = F(1) / fL[(i * (i + 1)) / 2 + i]; return true; } /** @brief obtain the inverse of the decomposed matrix L * * This is the method to use with a plain array. * * @returns if the decomposition was successful */ template bool getLi(M& m) const { if (!fOk) return false; for (unsigned i = 0; i < N; ++i) { // zero lower half of matrix for (unsigned j = i + 1; j < N; ++j) m(j, i) = F(0); // copy the rest for (unsigned j = 0; j <= i; ++j) m(j, i) = fL[i * (i + 1) / 2 + j]; } // invert the off-diagonal part of what we just copied for (unsigned i = 1; i < N; ++i) { for (unsigned j = 0; j < i; ++j) { typename M::value_type tmp = F(0); for (unsigned k = i; k-- > j;) tmp -= m(k, i) * m(j, k); m(j, i) = tmp * m(i, i); } } return true; } /** @brief obtain the inverse of the decomposed matrix L * * @returns if the decomposition was successful * * NOTE: the matrix is given in packed representation, matrix * element m(j,i) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template bool getLi(G* m) const { if (!fOk) return false; // copy L for (unsigned i = 0; i < (N * (N + 1)) / 2; ++i) m[i] = fL[i]; // invert the off-diagonal part of what we just copied G* base1 = &m[1]; for (unsigned i = 1; i < N; base1 += ++i) { for (unsigned j = 0; j < i; ++j) { G tmp = F(0); const G *base2 = &m[(i * (i - 1)) / 2]; for (unsigned k = i; k-- > j; base2 -= k) tmp -= base1[k] * base2[j]; base1[j] = tmp * base1[i]; } } return true; } }; /// class to compute the Cholesky decomposition of a matrix /** class to compute the Cholesky decomposition of a symmetric * positive definite matrix when the dimensionality of the problem is not known * at compile time * * provides routines to check if the decomposition succeeded (i.e. if * matrix is positive definite and non-singular), to solve a linear * system for the given matrix and to obtain its inverse * * the actual functionality is implemented in templated helper * classes which have specializations for dimensions N = 1 to 6 * to achieve a gain in speed for common matrix sizes * * usage example: * @code * // let m be a symmetric positive definite SMatrix (use type float * // for internal computations, matrix size is 4x4) * CholeskyDecompGenDim decomp(4, m); * // check if the decomposition succeeded * if (!decomp) { * std::cerr << "decomposition failed!" << std::endl; * } else { * // let rhs be a vector; we seek a vector x such that m * x = rhs * decomp.Solve(rhs); * // rhs now contains the solution we are looking for * * // obtain the inverse of m, put it into m itself * decomp.Invert(m); * } * @endcode */ template class CholeskyDecompGenDim { private: /** @brief dimensionality * dimensionality of the problem */ unsigned fN; /// lower triangular matrix L /** lower triangular matrix L, packed storage, with diagonal * elements pre-inverted */ F *fL; /// flag indicating a successful decomposition bool fOk; public: /// perform a Cholesky decomposition /** perfrom a Cholesky decomposition of a symmetric positive * definite matrix m * * this is the constructor to uses with an SMatrix (and objects * that behave like an SMatrix in terms of using * operator()(int i, int j) for access to elements) */ template CholeskyDecompGenDim(unsigned N, const M& m) : fN(N), fL(new F[(fN * (fN + 1)) / 2]), fOk(false) { using CholeskyDecompHelpers::_decomposerGenDim; fOk = _decomposerGenDim()(fL, m, fN); } /// perform a Cholesky decomposition /** perfrom a Cholesky decomposition of a symmetric positive * definite matrix m * * this is the constructor to use in special applications where * plain arrays are used * * NOTE: the matrix is given in packed representation, matrix * element m(i,j) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template CholeskyDecompGenDim(unsigned N, G* m) : fN(N), fL(new F[(fN * (fN + 1)) / 2]), fOk(false) { using CholeskyDecompHelpers::_decomposerGenDim; using CholeskyDecompHelpers::PackedArrayAdapter; fOk = _decomposerGenDim >()( fL, PackedArrayAdapter(m), fN); } /// destructor ~CholeskyDecompGenDim() { delete[] fL; } /// returns true if decomposition was successful /** @returns true if decomposition was successful */ bool ok() const { return fOk; } /// returns true if decomposition was successful /** @returns true if decomposition was successful */ operator bool() const { return fOk; } /** @brief solves a linear system for the given right hand side * * Note that you can use both SVector classes and plain arrays for * rhs. (Make sure that the sizes match!). It will work with any vector * implementing the operator [i] * * @returns if the decomposition was successful */ template bool Solve(V& rhs) const { using CholeskyDecompHelpers::_solverGenDim; if (fOk) _solverGenDim()(rhs, fL, fN); return fOk; } /** @brief place the inverse into m * * This is the method to use with an SMatrix. * * @returns if the decomposition was successful */ template bool Invert(M& m) const { using CholeskyDecompHelpers::_inverterGenDim; if (fOk) _inverterGenDim()(m, fL, fN); return fOk; } /** @brief place the inverse into m * * This is the method to use with a plain array. * * @returns if the decomposition was successful * * NOTE: the matrix is given in packed representation, matrix * element m(i,j) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template bool Invert(G* m) const { using CholeskyDecompHelpers::_inverterGenDim; using CholeskyDecompHelpers::PackedArrayAdapter; if (fOk) { PackedArrayAdapter adapted(m); _inverterGenDim >()(adapted, fL, fN); } return fOk; } /** @brief obtain the decomposed matrix L * * This is the method to use with a plain array. * * @returns if the decomposition was successful */ template bool getL(M& m) const { if (!fOk) return false; for (unsigned i = 0; i < fN; ++i) { // zero upper half of matrix for (unsigned j = i + 1; j < fN; ++j) m(i, j) = F(0); // copy the rest for (unsigned j = 0; j <= i; ++j) m(i, j) = fL[i * (i + 1) / 2 + j]; // adjust the diagonal - we save 1/L(i, i) in that position, so // convert to what caller expects m(i, i) = F(1) / m(i, i); } return true; } /** @brief obtain the decomposed matrix L * * @returns if the decomposition was successful * * NOTE: the matrix is given in packed representation, matrix * element m(i,j) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template bool getL(G* m) const { if (!fOk) return false; // copy L for (unsigned i = 0; i < (fN * (fN + 1)) / 2; ++i) m[i] = fL[i]; // adjust diagonal - we save 1/L(i, i) in that position, so convert to // what caller expects for (unsigned i = 0; i < fN; ++i) m[(i * (i + 1)) / 2 + i] = F(1) / fL[(i * (i + 1)) / 2 + i]; return true; } /** @brief obtain the inverse of the decomposed matrix L * * This is the method to use with a plain array. * * @returns if the decomposition was successful */ template bool getLi(M& m) const { if (!fOk) return false; for (unsigned i = 0; i < fN; ++i) { // zero lower half of matrix for (unsigned j = i + 1; j < fN; ++j) m(j, i) = F(0); // copy the rest for (unsigned j = 0; j <= i; ++j) m(j, i) = fL[i * (i + 1) / 2 + j]; } // invert the off-diagonal part of what we just copied for (unsigned i = 1; i < fN; ++i) { for (unsigned j = 0; j < i; ++j) { typename M::value_type tmp = F(0); for (unsigned k = i; k-- > j;) tmp -= m(k, i) * m(j, k); m(j, i) = tmp * m(i, i); } } return true; } /** @brief obtain the inverse of the decomposed matrix L * * @returns if the decomposition was successful * * NOTE: the matrix is given in packed representation, matrix * element m(j,i) (j <= i) is supposed to be in array element * (i * (i + 1)) / 2 + j */ template bool getLi(G* m) const { if (!fOk) return false; // copy L for (unsigned i = 0; i < (fN * (fN + 1)) / 2; ++i) m[i] = fL[i]; // invert the off-diagonal part of what we just copied G* base1 = &m[1]; for (unsigned i = 1; i < fN; base1 += ++i) { for (unsigned j = 0; j < i; ++j) { G tmp = F(0); const G *base2 = &m[(i * (i - 1)) / 2]; for (unsigned k = i; k-- > j; base2 -= k) tmp -= base1[k] * base2[j]; base1[j] = tmp * base1[i]; } } return true; } }; namespace CholeskyDecompHelpers { /// adapter for packed arrays (to SMatrix indexing conventions) template class PackedArrayAdapter { private: G* fArr; ///< pointer to first array element public: /// constructor PackedArrayAdapter(G* arr) : fArr(arr) {} /// read access to elements (make sure that j <= i) const G operator()(unsigned i, unsigned j) const { return fArr[((i * (i + 1)) / 2) + j]; } /// write access to elements (make sure that j <= i) G& operator()(unsigned i, unsigned j) { return fArr[((i * (i + 1)) / 2) + j]; } }; /// struct to do a Cholesky decomposition (general dimensionality) template struct _decomposerGenDim { /// method to do the decomposition /** @returns if the decomposition was successful */ bool operator()(F* dst, const M& src, unsigned N) const { // perform Cholesky decomposition of matrix: M = L L^T // only thing that can go wrong: trying to take square // root of negative number or zero (matrix is // ill-conditioned or singular in these cases) // element L(i,j) is at array position (i * (i+1)) / 2 + j // quirk: we may need to invert L later anyway, so we can // invert elements on diagonale straight away (we only // ever need their reciprocals!) // cache starting address of rows of L for speed reasons F *base1 = &dst[0]; for (unsigned i = 0; i < N; base1 += ++i) { F tmpdiag = F(0.0); // for element on diagonale // calculate off-diagonal elements F *base2 = &dst[0]; for (unsigned j = 0; j < i; base2 += ++j) { F tmp = src(i, j); for (unsigned k = j; k--; ) tmp -= base1[k] * base2[k]; base1[j] = tmp *= base2[j]; // keep track of contribution to element on diagonale tmpdiag += tmp * tmp; } // keep truncation error small tmpdiag = src(i, i) - tmpdiag; // check if positive definite if (tmpdiag <= F(0.0)) return false; else base1[i] = std::sqrt(F(1.0) / tmpdiag); } return true; } }; /// struct to do a Cholesky decomposition template struct _decomposer { /// method to do the decomposition /** @returns if the decomposition was successful */ bool operator()(F* dst, const M& src) const { return _decomposerGenDim()(dst, src, N); } }; /// struct to obtain the inverse from a Cholesky decomposition (general dimensionality) template struct _inverterGenDim { /// method to do the inversion void operator()(M& dst, const F* src, unsigned N) const { // make working copy F * l = new F[N * (N + 1) / 2]; std::copy(src, src + ((N * (N + 1)) / 2), l); // ok, next step: invert off-diagonal part of matrix F* base1 = &l[1]; for (unsigned i = 1; i < N; base1 += ++i) { for (unsigned j = 0; j < i; ++j) { F tmp = F(0.0); const F *base2 = &l[(i * (i - 1)) / 2]; for (unsigned k = i; k-- > j; base2 -= k) tmp -= base1[k] * base2[j]; base1[j] = tmp * base1[i]; } } // Li = L^(-1) formed, now calculate M^(-1) = Li^T Li for (unsigned i = N; i--; ) { for (unsigned j = i + 1; j--; ) { F tmp = F(0.0); base1 = &l[(N * (N - 1)) / 2]; for (unsigned k = N; k-- > i; base1 -= k) tmp += base1[i] * base1[j]; dst(i, j) = tmp; } } delete [] l; } }; /// struct to obtain the inverse from a Cholesky decomposition template struct _inverter { /// method to do the inversion void operator()(M& dst, const F* src) const { return _inverterGenDim()(dst, src, N); } }; /// struct to solve a linear system using its Cholesky decomposition (generalised dimensionality) template struct _solverGenDim { /// method to solve the linear system void operator()(V& rhs, const F* l, unsigned N) const { // solve Ly = rhs for (unsigned k = 0; k < N; ++k) { const unsigned base = (k * (k + 1)) / 2; F sum = F(0.0); for (unsigned i = k; i--; ) sum += rhs[i] * l[base + i]; // elements on diagonale are pre-inverted! rhs[k] = (rhs[k] - sum) * l[base + k]; } // solve L^Tx = y for (unsigned k = N; k--; ) { F sum = F(0.0); for (unsigned i = N; --i > k; ) sum += rhs[i] * l[(i * (i + 1)) / 2 + k]; // elements on diagonale are pre-inverted! rhs[k] = (rhs[k] - sum) * l[(k * (k + 1)) / 2 + k]; } } }; /// struct to solve a linear system using its Cholesky decomposition template struct _solver { /// method to solve the linear system void operator()(V& rhs, const F* l) const { _solverGenDim()(rhs, l, N); } }; /// struct to do a Cholesky decomposition (specialized, N = 6) template struct _decomposer { /// method to do the decomposition bool operator()(F* dst, const M& src) const { if (src(0,0) <= F(0.0)) return false; dst[0] = std::sqrt(F(1.0) / src(0,0)); dst[1] = src(1,0) * dst[0]; dst[2] = src(1,1) - dst[1] * dst[1]; if (dst[2] <= F(0.0)) return false; else dst[2] = std::sqrt(F(1.0) / dst[2]); dst[3] = src(2,0) * dst[0]; dst[4] = (src(2,1) - dst[1] * dst[3]) * dst[2]; dst[5] = src(2,2) - (dst[3] * dst[3] + dst[4] * dst[4]); if (dst[5] <= F(0.0)) return false; else dst[5] = std::sqrt(F(1.0) / dst[5]); dst[6] = src(3,0) * dst[0]; dst[7] = (src(3,1) - dst[1] * dst[6]) * dst[2]; dst[8] = (src(3,2) - dst[3] * dst[6] - dst[4] * dst[7]) * dst[5]; dst[9] = src(3,3) - (dst[6] * dst[6] + dst[7] * dst[7] + dst[8] * dst[8]); if (dst[9] <= F(0.0)) return false; else dst[9] = std::sqrt(F(1.0) / dst[9]); dst[10] = src(4,0) * dst[0]; dst[11] = (src(4,1) - dst[1] * dst[10]) * dst[2]; dst[12] = (src(4,2) - dst[3] * dst[10] - dst[4] * dst[11]) * dst[5]; dst[13] = (src(4,3) - dst[6] * dst[10] - dst[7] * dst[11] - dst[8] * dst[12]) * dst[9]; dst[14] = src(4,4) - (dst[10]*dst[10]+dst[11]*dst[11]+dst[12]*dst[12]+dst[13]*dst[13]); if (dst[14] <= F(0.0)) return false; else dst[14] = std::sqrt(F(1.0) / dst[14]); dst[15] = src(5,0) * dst[0]; dst[16] = (src(5,1) - dst[1] * dst[15]) * dst[2]; dst[17] = (src(5,2) - dst[3] * dst[15] - dst[4] * dst[16]) * dst[5]; dst[18] = (src(5,3) - dst[6] * dst[15] - dst[7] * dst[16] - dst[8] * dst[17]) * dst[9]; dst[19] = (src(5,4) - dst[10] * dst[15] - dst[11] * dst[16] - dst[12] * dst[17] - dst[13] * dst[18]) * dst[14]; dst[20] = src(5,5) - (dst[15]*dst[15]+dst[16]*dst[16]+dst[17]*dst[17]+dst[18]*dst[18]+dst[19]*dst[19]); if (dst[20] <= F(0.0)) return false; else dst[20] = std::sqrt(F(1.0) / dst[20]); return true; } }; /// struct to do a Cholesky decomposition (specialized, N = 5) template struct _decomposer { /// method to do the decomposition bool operator()(F* dst, const M& src) const { if (src(0,0) <= F(0.0)) return false; dst[0] = std::sqrt(F(1.0) / src(0,0)); dst[1] = src(1,0) * dst[0]; dst[2] = src(1,1) - dst[1] * dst[1]; if (dst[2] <= F(0.0)) return false; else dst[2] = std::sqrt(F(1.0) / dst[2]); dst[3] = src(2,0) * dst[0]; dst[4] = (src(2,1) - dst[1] * dst[3]) * dst[2]; dst[5] = src(2,2) - (dst[3] * dst[3] + dst[4] * dst[4]); if (dst[5] <= F(0.0)) return false; else dst[5] = std::sqrt(F(1.0) / dst[5]); dst[6] = src(3,0) * dst[0]; dst[7] = (src(3,1) - dst[1] * dst[6]) * dst[2]; dst[8] = (src(3,2) - dst[3] * dst[6] - dst[4] * dst[7]) * dst[5]; dst[9] = src(3,3) - (dst[6] * dst[6] + dst[7] * dst[7] + dst[8] * dst[8]); if (dst[9] <= F(0.0)) return false; else dst[9] = std::sqrt(F(1.0) / dst[9]); dst[10] = src(4,0) * dst[0]; dst[11] = (src(4,1) - dst[1] * dst[10]) * dst[2]; dst[12] = (src(4,2) - dst[3] * dst[10] - dst[4] * dst[11]) * dst[5]; dst[13] = (src(4,3) - dst[6] * dst[10] - dst[7] * dst[11] - dst[8] * dst[12]) * dst[9]; dst[14] = src(4,4) - (dst[10]*dst[10]+dst[11]*dst[11]+dst[12]*dst[12]+dst[13]*dst[13]); if (dst[14] <= F(0.0)) return false; else dst[14] = std::sqrt(F(1.0) / dst[14]); return true; } }; /// struct to do a Cholesky decomposition (specialized, N = 4) template struct _decomposer { /// method to do the decomposition bool operator()(F* dst, const M& src) const { if (src(0,0) <= F(0.0)) return false; dst[0] = std::sqrt(F(1.0) / src(0,0)); dst[1] = src(1,0) * dst[0]; dst[2] = src(1,1) - dst[1] * dst[1]; if (dst[2] <= F(0.0)) return false; else dst[2] = std::sqrt(F(1.0) / dst[2]); dst[3] = src(2,0) * dst[0]; dst[4] = (src(2,1) - dst[1] * dst[3]) * dst[2]; dst[5] = src(2,2) - (dst[3] * dst[3] + dst[4] * dst[4]); if (dst[5] <= F(0.0)) return false; else dst[5] = std::sqrt(F(1.0) / dst[5]); dst[6] = src(3,0) * dst[0]; dst[7] = (src(3,1) - dst[1] * dst[6]) * dst[2]; dst[8] = (src(3,2) - dst[3] * dst[6] - dst[4] * dst[7]) * dst[5]; dst[9] = src(3,3) - (dst[6] * dst[6] + dst[7] * dst[7] + dst[8] * dst[8]); if (dst[9] <= F(0.0)) return false; else dst[9] = std::sqrt(F(1.0) / dst[9]); return true; } }; /// struct to do a Cholesky decomposition (specialized, N = 3) template struct _decomposer { /// method to do the decomposition bool operator()(F* dst, const M& src) const { if (src(0,0) <= F(0.0)) return false; dst[0] = std::sqrt(F(1.0) / src(0,0)); dst[1] = src(1,0) * dst[0]; dst[2] = src(1,1) - dst[1] * dst[1]; if (dst[2] <= F(0.0)) return false; else dst[2] = std::sqrt(F(1.0) / dst[2]); dst[3] = src(2,0) * dst[0]; dst[4] = (src(2,1) - dst[1] * dst[3]) * dst[2]; dst[5] = src(2,2) - (dst[3] * dst[3] + dst[4] * dst[4]); if (dst[5] <= F(0.0)) return false; else dst[5] = std::sqrt(F(1.0) / dst[5]); return true; } }; /// struct to do a Cholesky decomposition (specialized, N = 2) template struct _decomposer { /// method to do the decomposition bool operator()(F* dst, const M& src) const { if (src(0,0) <= F(0.0)) return false; dst[0] = std::sqrt(F(1.0) / src(0,0)); dst[1] = src(1,0) * dst[0]; dst[2] = src(1,1) - dst[1] * dst[1]; if (dst[2] <= F(0.0)) return false; else dst[2] = std::sqrt(F(1.0) / dst[2]); return true; } }; /// struct to do a Cholesky decomposition (specialized, N = 1) template struct _decomposer { /// method to do the decomposition bool operator()(F* dst, const M& src) const { if (src(0,0) <= F(0.0)) return false; dst[0] = std::sqrt(F(1.0) / src(0,0)); return true; } }; /// struct to do a Cholesky decomposition (specialized, N = 0) template struct _decomposer { private: _decomposer() { }; bool operator()(F* dst, const M& src) const; }; /// struct to obtain the inverse from a Cholesky decomposition (N = 6) template struct _inverter { /// method to do the inversion inline void operator()(M& dst, const F* src) const { const F li21 = -src[1] * src[0] * src[2]; const F li32 = -src[4] * src[2] * src[5]; const F li31 = (src[1] * src[4] * src[2] - src[3]) * src[0] * src[5]; const F li43 = -src[8] * src[9] * src[5]; const F li42 = (src[4] * src[8] * src[5] - src[7]) * src[2] * src[9]; const F li41 = (-src[1] * src[4] * src[8] * src[2] * src[5] + src[1] * src[7] * src[2] + src[3] * src[8] * src[5] - src[6]) * src[0] * src[9]; const F li54 = -src[13] * src[14] * src[9]; const F li53 = (src[13] * src[8] * src[9] - src[12]) * src[5] * src[14]; const F li52 = (-src[4] * src[8] * src[13] * src[5] * src[9] + src[4] * src[12] * src[5] + src[7] * src[13] * src[9] - src[11]) * src[2] * src[14]; const F li51 = (src[1]*src[4]*src[8]*src[13]*src[2]*src[5]*src[9] - src[13]*src[8]*src[3]*src[9]*src[5] - src[12]*src[4]*src[1]*src[2]*src[5] - src[13]*src[7]*src[1]*src[9]*src[2] + src[11]*src[1]*src[2] + src[12]*src[3]*src[5] + src[13]*src[6]*src[9] -src[10]) * src[0] * src[14]; const F li65 = -src[19] * src[20] * src[14]; const F li64 = (src[19] * src[13] * src[14] - src[18]) * src[9] * src[20]; const F li63 = (-src[8] * src[13] * src[19] * src[9] * src[14] + src[8] * src[18] * src[9] + src[12] * src[19] * src[14] - src[17]) * src[5] * src[20]; const F li62 = (src[4]*src[8]*src[13]*src[19]*src[5]*src[9]*src[14] - src[18]*src[8]*src[4]*src[9]*src[5] - src[19]*src[12]*src[4]*src[14]*src[5] -src[19]*src[13]*src[7]*src[14]*src[9] + src[17]*src[4]*src[5] + src[18]*src[7]*src[9] + src[19]*src[11]*src[14] - src[16]) * src[2] * src[20]; const F li61 = (-src[19]*src[13]*src[8]*src[4]*src[1]*src[2]*src[5]*src[9]*src[14] + src[18]*src[8]*src[4]*src[1]*src[2]*src[5]*src[9] + src[19]*src[12]*src[4]*src[1]*src[2]*src[5]*src[14] + src[19]*src[13]*src[7]*src[1]*src[2]*src[9]*src[14] + src[19]*src[13]*src[8]*src[3]*src[5]*src[9]*src[14] - src[17]*src[4]*src[1]*src[2]*src[5] - src[18]*src[7]*src[1]*src[2]*src[9] - src[19]*src[11]*src[1]*src[2]*src[14] - src[18]*src[8]*src[3]*src[5]*src[9] - src[19]*src[12]*src[3]*src[5]*src[14] - src[19]*src[13]*src[6]*src[9]*src[14] + src[16]*src[1]*src[2] + src[17]*src[3]*src[5] + src[18]*src[6]*src[9] + src[19]*src[10]*src[14] - src[15]) * src[0] * src[20]; dst(0,0) = li61*li61 + li51*li51 + li41*li41 + li31*li31 + li21*li21 + src[0]*src[0]; dst(1,0) = li61*li62 + li51*li52 + li41*li42 + li31*li32 + li21*src[2]; dst(1,1) = li62*li62 + li52*li52 + li42*li42 + li32*li32 + src[2]*src[2]; dst(2,0) = li61*li63 + li51*li53 + li41*li43 + li31*src[5]; dst(2,1) = li62*li63 + li52*li53 + li42*li43 + li32*src[5]; dst(2,2) = li63*li63 + li53*li53 + li43*li43 + src[5]*src[5]; dst(3,0) = li61*li64 + li51*li54 + li41*src[9]; dst(3,1) = li62*li64 + li52*li54 + li42*src[9]; dst(3,2) = li63*li64 + li53*li54 + li43*src[9]; dst(3,3) = li64*li64 + li54*li54 + src[9]*src[9]; dst(4,0) = li61*li65 + li51*src[14]; dst(4,1) = li62*li65 + li52*src[14]; dst(4,2) = li63*li65 + li53*src[14]; dst(4,3) = li64*li65 + li54*src[14]; dst(4,4) = li65*li65 + src[14]*src[14]; dst(5,0) = li61*src[20]; dst(5,1) = li62*src[20]; dst(5,2) = li63*src[20]; dst(5,3) = li64*src[20]; dst(5,4) = li65*src[20]; dst(5,5) = src[20]*src[20]; } }; /// struct to obtain the inverse from a Cholesky decomposition (N = 5) template struct _inverter { /// method to do the inversion inline void operator()(M& dst, const F* src) const { const F li21 = -src[1] * src[0] * src[2]; const F li32 = -src[4] * src[2] * src[5]; const F li31 = (src[1] * src[4] * src[2] - src[3]) * src[0] * src[5]; const F li43 = -src[8] * src[9] * src[5]; const F li42 = (src[4] * src[8] * src[5] - src[7]) * src[2] * src[9]; const F li41 = (-src[1] * src[4] * src[8] * src[2] * src[5] + src[1] * src[7] * src[2] + src[3] * src[8] * src[5] - src[6]) * src[0] * src[9]; const F li54 = -src[13] * src[14] * src[9]; const F li53 = (src[13] * src[8] * src[9] - src[12]) * src[5] * src[14]; const F li52 = (-src[4] * src[8] * src[13] * src[5] * src[9] + src[4] * src[12] * src[5] + src[7] * src[13] * src[9] - src[11]) * src[2] * src[14]; const F li51 = (src[1]*src[4]*src[8]*src[13]*src[2]*src[5]*src[9] - src[13]*src[8]*src[3]*src[9]*src[5] - src[12]*src[4]*src[1]*src[2]*src[5] - src[13]*src[7]*src[1]*src[9]*src[2] + src[11]*src[1]*src[2] + src[12]*src[3]*src[5] + src[13]*src[6]*src[9] -src[10]) * src[0] * src[14]; dst(0,0) = li51*li51 + li41*li41 + li31*li31 + li21*li21 + src[0]*src[0]; dst(1,0) = li51*li52 + li41*li42 + li31*li32 + li21*src[2]; dst(1,1) = li52*li52 + li42*li42 + li32*li32 + src[2]*src[2]; dst(2,0) = li51*li53 + li41*li43 + li31*src[5]; dst(2,1) = li52*li53 + li42*li43 + li32*src[5]; dst(2,2) = li53*li53 + li43*li43 + src[5]*src[5]; dst(3,0) = li51*li54 + li41*src[9]; dst(3,1) = li52*li54 + li42*src[9]; dst(3,2) = li53*li54 + li43*src[9]; dst(3,3) = li54*li54 + src[9]*src[9]; dst(4,0) = li51*src[14]; dst(4,1) = li52*src[14]; dst(4,2) = li53*src[14]; dst(4,3) = li54*src[14]; dst(4,4) = src[14]*src[14]; } }; /// struct to obtain the inverse from a Cholesky decomposition (N = 4) template struct _inverter { /// method to do the inversion inline void operator()(M& dst, const F* src) const { const F li21 = -src[1] * src[0] * src[2]; const F li32 = -src[4] * src[2] * src[5]; const F li31 = (src[1] * src[4] * src[2] - src[3]) * src[0] * src[5]; const F li43 = -src[8] * src[9] * src[5]; const F li42 = (src[4] * src[8] * src[5] - src[7]) * src[2] * src[9]; const F li41 = (-src[1] * src[4] * src[8] * src[2] * src[5] + src[1] * src[7] * src[2] + src[3] * src[8] * src[5] - src[6]) * src[0] * src[9]; dst(0,0) = li41*li41 + li31*li31 + li21*li21 + src[0]*src[0]; dst(1,0) = li41*li42 + li31*li32 + li21*src[2]; dst(1,1) = li42*li42 + li32*li32 + src[2]*src[2]; dst(2,0) = li41*li43 + li31*src[5]; dst(2,1) = li42*li43 + li32*src[5]; dst(2,2) = li43*li43 + src[5]*src[5]; dst(3,0) = li41*src[9]; dst(3,1) = li42*src[9]; dst(3,2) = li43*src[9]; dst(3,3) = src[9]*src[9]; } }; /// struct to obtain the inverse from a Cholesky decomposition (N = 3) template struct _inverter { /// method to do the inversion inline void operator()(M& dst, const F* src) const { const F li21 = -src[1] * src[0] * src[2]; const F li32 = -src[4] * src[2] * src[5]; const F li31 = (src[1] * src[4] * src[2] - src[3]) * src[0] * src[5]; dst(0,0) = li31*li31 + li21*li21 + src[0]*src[0]; dst(1,0) = li31*li32 + li21*src[2]; dst(1,1) = li32*li32 + src[2]*src[2]; dst(2,0) = li31*src[5]; dst(2,1) = li32*src[5]; dst(2,2) = src[5]*src[5]; } }; /// struct to obtain the inverse from a Cholesky decomposition (N = 2) template struct _inverter { /// method to do the inversion inline void operator()(M& dst, const F* src) const { const F li21 = -src[1] * src[0] * src[2]; dst(0,0) = li21*li21 + src[0]*src[0]; dst(1,0) = li21*src[2]; dst(1,1) = src[2]*src[2]; } }; /// struct to obtain the inverse from a Cholesky decomposition (N = 1) template struct _inverter { /// method to do the inversion inline void operator()(M& dst, const F* src) const { dst(0,0) = src[0]*src[0]; } }; /// struct to obtain the inverse from a Cholesky decomposition (N = 0) template struct _inverter { private: _inverter(); void operator()(M& dst, const F* src) const; }; /// struct to solve a linear system using its Cholesky decomposition (N=6) template struct _solver { /// method to solve the linear system void operator()(V& rhs, const F* l) const { // solve Ly = rhs const F y0 = rhs[0] * l[0]; const F y1 = (rhs[1]-l[1]*y0)*l[2]; const F y2 = (rhs[2]-(l[3]*y0+l[4]*y1))*l[5]; const F y3 = (rhs[3]-(l[6]*y0+l[7]*y1+l[8]*y2))*l[9]; const F y4 = (rhs[4]-(l[10]*y0+l[11]*y1+l[12]*y2+l[13]*y3))*l[14]; const F y5 = (rhs[5]-(l[15]*y0+l[16]*y1+l[17]*y2+l[18]*y3+l[19]*y4))*l[20]; // solve L^Tx = y, and put x into rhs rhs[5] = y5 * l[20]; rhs[4] = (y4-l[19]*rhs[5])*l[14]; rhs[3] = (y3-(l[18]*rhs[5]+l[13]*rhs[4]))*l[9]; rhs[2] = (y2-(l[17]*rhs[5]+l[12]*rhs[4]+l[8]*rhs[3]))*l[5]; rhs[1] = (y1-(l[16]*rhs[5]+l[11]*rhs[4]+l[7]*rhs[3]+l[4]*rhs[2]))*l[2]; rhs[0] = (y0-(l[15]*rhs[5]+l[10]*rhs[4]+l[6]*rhs[3]+l[3]*rhs[2]+l[1]*rhs[1]))*l[0]; } }; /// struct to solve a linear system using its Cholesky decomposition (N=5) template struct _solver { /// method to solve the linear system void operator()(V& rhs, const F* l) const { // solve Ly = rhs const F y0 = rhs[0] * l[0]; const F y1 = (rhs[1]-l[1]*y0)*l[2]; const F y2 = (rhs[2]-(l[3]*y0+l[4]*y1))*l[5]; const F y3 = (rhs[3]-(l[6]*y0+l[7]*y1+l[8]*y2))*l[9]; const F y4 = (rhs[4]-(l[10]*y0+l[11]*y1+l[12]*y2+l[13]*y3))*l[14]; // solve L^Tx = y, and put x into rhs rhs[4] = (y4)*l[14]; rhs[3] = (y3-(l[13]*rhs[4]))*l[9]; rhs[2] = (y2-(l[12]*rhs[4]+l[8]*rhs[3]))*l[5]; rhs[1] = (y1-(l[11]*rhs[4]+l[7]*rhs[3]+l[4]*rhs[2]))*l[2]; rhs[0] = (y0-(l[10]*rhs[4]+l[6]*rhs[3]+l[3]*rhs[2]+l[1]*rhs[1]))*l[0]; } }; /// struct to solve a linear system using its Cholesky decomposition (N=4) template struct _solver { /// method to solve the linear system void operator()(V& rhs, const F* l) const { // solve Ly = rhs const F y0 = rhs[0] * l[0]; const F y1 = (rhs[1]-l[1]*y0)*l[2]; const F y2 = (rhs[2]-(l[3]*y0+l[4]*y1))*l[5]; const F y3 = (rhs[3]-(l[6]*y0+l[7]*y1+l[8]*y2))*l[9]; // solve L^Tx = y, and put x into rhs rhs[3] = (y3)*l[9]; rhs[2] = (y2-(l[8]*rhs[3]))*l[5]; rhs[1] = (y1-(l[7]*rhs[3]+l[4]*rhs[2]))*l[2]; rhs[0] = (y0-(l[6]*rhs[3]+l[3]*rhs[2]+l[1]*rhs[1]))*l[0]; } }; /// struct to solve a linear system using its Cholesky decomposition (N=3) template struct _solver { /// method to solve the linear system void operator()(V& rhs, const F* l) const { // solve Ly = rhs const F y0 = rhs[0] * l[0]; const F y1 = (rhs[1]-l[1]*y0)*l[2]; const F y2 = (rhs[2]-(l[3]*y0+l[4]*y1))*l[5]; // solve L^Tx = y, and put x into rhs rhs[2] = (y2)*l[5]; rhs[1] = (y1-(l[4]*rhs[2]))*l[2]; rhs[0] = (y0-(l[3]*rhs[2]+l[1]*rhs[1]))*l[0]; } }; /// struct to solve a linear system using its Cholesky decomposition (N=2) template struct _solver { /// method to solve the linear system void operator()(V& rhs, const F* l) const { // solve Ly = rhs const F y0 = rhs[0] * l[0]; const F y1 = (rhs[1]-l[1]*y0)*l[2]; // solve L^Tx = y, and put x into rhs rhs[1] = (y1)*l[2]; rhs[0] = (y0-(l[1]*rhs[1]))*l[0]; } }; /// struct to solve a linear system using its Cholesky decomposition (N=1) template struct _solver { /// method to solve the linear system void operator()(V& rhs, const F* l) const { // solve LL^T x = rhs, put y into rhs rhs[0] *= l[0] * l[0]; } }; /// struct to solve a linear system using its Cholesky decomposition (N=0) template struct _solver { private: _solver(); void operator()(V& rhs, const F* l) const; }; } } // namespace Math } // namespace ROOT #endif // ROOT_Math_CHOLESKYDECOMP