// @(#)root/smatrix:$Id$ // Authors: T. Glebe, L. Moneta 2005 #ifndef ROOT_Math_Dfact #define ROOT_Math_Dfact // ******************************************************************** // // source: // // type: source code // // created: 02. Apr 2001 // // author: Thorsten Glebe // HERA-B Collaboration // Max-Planck-Institut fuer Kernphysik // Saupfercheckweg 1 // 69117 Heidelberg // Germany // E-mail: T.Glebe@mpi-hd.mpg.de // // Description: Determinant of a square matrix // Code was taken from CERNLIB::kernlib dfact function, translated // from FORTRAN to C++ and optimized. // // changes: // 02 Apr 2001 (TG) creation // // ******************************************************************** #include #ifndef ROOT_Math_MatrixRepresentationsStatic #include "Math/MatrixRepresentationsStatic.h" #endif namespace ROOT { namespace Math { /** Detrminant for a general squared matrix Function to compute the determinant from a square matrix (\f$ \det(A)\f$) of dimension idim and order n. @author T. Glebe */ template class Determinant { public: template static bool Dfact(MatRepStd& rhs, T& det) { #ifdef XXX if (idim < n || n <= 0) { return false; } #endif /* Initialized data */ // const typename MatrixRep::value_type* A = rhs.Array(); //typename MatrixRep::value_type* a = rhs.Array(); /* Local variables */ unsigned int nxch, i, j, k, l; //static typename MatrixRep::value_type p, q, tf; T p, q, tf; /* Parameter adjustments */ // a -= idim + 1; const int arrayOffset = - int(idim+1); /* Function Body */ // fact.inc nxch = 0; det = 1.; for (j = 1; j <= n; ++j) { const unsigned int ji = j * idim; const unsigned int jj = j + ji; k = j; p = std::abs(rhs[jj + arrayOffset]); if (j != n) { for (i = j + 1; i <= n; ++i) { q = std::abs(rhs[i + ji + arrayOffset]); if (q > p) { k = i; p = q; } } // for i if (k != j) { for (l = 1; l <= n; ++l) { const unsigned int li = l*idim; const unsigned int jli = j + li; const unsigned int kli = k + li; tf = rhs[jli + arrayOffset]; rhs[jli + arrayOffset] = rhs[kli + arrayOffset]; rhs[kli + arrayOffset] = tf; } // for l ++nxch; } // if k != j } // if j!=n if (p <= 0.) { det = 0; return false; } det *= rhs[jj + arrayOffset]; #ifdef XXX t = std::abs(det); if (t < 1e-19 || t > 1e19) { det = 0; return false; } #endif // using 1.0f removes a warning on Windows (1.0f is still the same as 1.0) rhs[jj + arrayOffset] = 1.0f / rhs[jj + arrayOffset]; if (j == n) { continue; } const unsigned int jm1 = j - 1; const unsigned int jpi = (j + 1) * idim; const unsigned int jjpi = j + jpi; for (k = j + 1; k <= n; ++k) { const unsigned int ki = k * idim; const unsigned int jki = j + ki; const unsigned int kji = k + jpi; if (j != 1) { for (i = 1; i <= jm1; ++i) { const unsigned int ii = i * idim; rhs[jki + arrayOffset] -= rhs[i + ki + arrayOffset] * rhs[j + ii + arrayOffset]; rhs[kji + arrayOffset] -= rhs[i + jpi + arrayOffset] * rhs[k + ii + arrayOffset]; } // for i } rhs[jki + arrayOffset] *= rhs[jj + arrayOffset]; rhs[kji + arrayOffset] -= rhs[jjpi + arrayOffset] * rhs[k + ji + arrayOffset]; } // for k } // for j if (nxch % 2 != 0) { det = -(det); } return true; } // end of Dfact // t.b.d re-implement methods for symmetric // symmetric function (copy in a general one) template static bool Dfact(MatRepSym & rhs, T & det) { // not very efficient but need to re-do Dsinv for new storage of // symmetric matrices MatRepStd tmp; for (unsigned int i = 0; i< n*n; ++i) tmp[i] = rhs[i]; if (! Determinant::Dfact(tmp,det) ) return false; // // recopy the data // for (int i = 0; i< idim*n; ++i) // rhs[i] = tmp[i]; return true; } }; } // namespace Math } // namespace ROOT #endif /* ROOT_Math_Dfact */